@UNIVERSITY OF CMACS

I\/‘ Z s R l I AND omputational ' ‘odeling and ['Inalysis for ‘_omplex 'ystems

Software Verification / Testing

Rance Cleaveland
Department of Computer Science
Fraunhofer Center for Expearlir;gental Software Engineering
University of Maryland

20 October 2011

©@2011 University of Margland

@ UNIVERSITY OF
Yy MARYLAND

This Talk

Some recent developments in software
verification and testing

@201 University of Marylarnd 1

: UNIVERSITY OF
& MARYLAND
Software Verification?

* Related to, but different from, IEEE definition
« Traditionally, in CS: formal methods
— Given software, spec
« Software = “code”
« Spec = “requirement” = logical formula
— Prove software meets spec
 (Informal verification often called “validation”.)

©@2011 University of Margland

@ UNIVERSITY OF
Yy MARYLAND

Model Checking

* Verification = proof
* Model checking: automated proof!
— Given software, spec
— Model checker tries to build proof
* Ongoing research: applicability
— Decidabillity
— Scalability
 Embedded control applications!

©@2011 University of Margland 3

@ UNIVERSITY OF
Yy MARYLAND

Software Testing

* Most often-used method for checking
software correctness

— Select tests
— Run software on tests
— Analyze results
* Traditionally
— Manual, hence time-consuming, expensive

— In control applications: hard to test
software by itself

©@2011 University of Margland

UNIVERSITY OF
& MARYLAND
Exciting Developments

« Combine
— Formal specs
— Testing
« To automate testing “scalably”
— Model-based testing
— Instrumentation-based verification
— Requirements reconstruction

@201 University of Marylarnd 5

@ UNIVERSITY OF
Yy MARYLAND

Model-Based Testing

* Develop specs as executable models
— Simulink
— State machines
— Etc.
* Use model to determine correct test response
— Automates “results analysis”
— Models, tests needed

©@2011 University of Margland

@/ UNIVERSITY OF
MARYLAND

CMACS

omputational ' ‘odeling and

nalysis for _omplex -'ystems

Model-Based Testing (cont.)

UraillaDeita

TeomanIDL

Tests B

@201 University of Margland

@ UNIVERSITY OF
Yy MARYLAND

Tests Can Be Generated from
Models!

Model ::> TeSt <::> Tests

Gen

* Functionality provided by tools like Reactis® for Simulink /
Stateflow

« (Goal: automate test generation task by creating tests that
cover model logic

* Reactis: guided simulation algorithm

@201 University of Marylarnd 8

@ UNIVE%TY OF
Applying Model-Based Testing

* Widespread in automotive, less so in aero /
medical-device

— Regqulatory issues
— Need for models
— Modeling notations, support
 What about models?
— Sometimes result of earlier design phases
— Models as reusable testing infrastructure

©@2011 University of Margland

@ UNIVE%TY OF
Challenges

* Technical
— Algorithms for test generation
— Modeling languages
* Procedural
— Integration into existing QA processes
— Regqulatory considerations

@201 University of Marylarnd 10

@ UNIVERSITY OF
Yy MARYLAND

Instrumentation-Based
Verification

 Model-based testing assumes model correct

 IBV: a way to check model correctness vis a vis
requirements

Requirements

\

models @ Specifications

@201 University of Marylarnd 11

UNIVERSITY OF CMACS
e M_ARY LAND omputational ' ‘odeling and ['Inalysis for ‘_omplex 'ystems

Instrumentation-Based
Verification: Requirements

 Verification needs

fo rmalized crtﬁse_alidtorfssertiun: Low5Speedinactive * |Z||E|[Z|

requirements B Ele (2 e =00 N
« |BV: formalize O

requirements as L

monitor models e

@ . O Ez:Elt 1

 Example

“If speed is < 30,

cruise control must | e

remain inactive”

@201 University of Marylarnd 12

@UNIVERSITY OF CMACS

I\/‘ Z s R l I AND omputational ' ‘odeling and ['Inalysis for ‘_omplex 'ystems

Instrumentation-Based Verification:
Checking Requirements

* InStru me-nt deSig n E“EiE Ilrage Window Help |Z”E|El
model with monitors B oo 4 & aaq 1 (01
) 1 | .v:;f A
Use coverage testing iy
to check for monitor Al
violations D o cror
 Tool: Reactis® &5 I
— Product of Reactive — .
Systems, Inc. 1
- Se arates)) @ o decel3et
instrumentation, design ceceise
- More infO: . % ™ 7 throttleDefta |——
www.reactive- = ﬂ
systems.com e : ! 8

@201 University of Marylarnd 13

@ UNIVERSITY OF
Yy MARYLAND

Applying Instrumentation-Based
Testing

« Robert Bosch production automotive application
— Requirements: 300-page document
— 10 subsystems formalized (20% of system)

* 62 requirements formalized as monitor
models

 |IBV applied
* 11 requirements issues identified

* Another Bosch case study: product-line
verification using IBV

A number of other case studies

@201 University of Marylarnd 14

@ UNIVERSITY OF
Yy MARYLAND

Requirements Reconstruction

* The Requirements Reconstruction problem
— Given: software
— Produce: requirements
 Why?
— System comprehension
— Specification reconstruction

* Missing / incomplete / out-of-date documentation
 “Implicit requirements” (introduced by developers)

@201 University of Marylarnd 15

@ UNIVERSITY OF
Yy MARYLAND

Invariants as Requirements

« Some requirements given as invariants

—“When the brake pedal is depressed, the
cruise control must disengage”

 State machines can be viewed as invariants
— States: values of variables
— Transitions: invariants

— “If the current state Is A then the next state
can be B”

* Another project with Robert Bosch

©@2011 University of Margland 16

' UNIVERSITY OF
& MARYLAND
Invariant Reconstruction

« Generate test data satisfying coverage
criteria

« Use machine learning to propose invariants

* Check invariants using instrumentation-based
verification

@201 University of Marylarnd 17

@} UNIVERSITY OF
Yy MARYLAND

Machine Learning: Association
Rule Mining

* Tools for inferring relationships among
variables based on time-series data

—Input: table
0 1 0

1 -1 -1
2 2 1

— Qutput: relationships (“association rules”)
eg. 0sx<3 ->y=20

@201 University of Marylarnd 18

@ UNIVERSITY OF
Yy MARYLAND

Association Rules and Invariant
Reconstruction

* General dea
— Treat tests (I/O sequences) as data
— Use machine learning to infer relationships
between inputs, outputs
* Qur insight

— Ensure test cases satisfy coverage criteria to
ensure “thoroughness”

— Use IBV to double-check proposed
relationships

@201 University of Marylarnd 19

@ UNIVERSITY OF
Yy MARYLAND

Pilot Study: Production
Automotive Application

 Artifacts
— Simulink model (ca. 75 blocks)
— Requirements formulated as state machine
— Requirements correspond to 42 invariants
defining transition relation

 Goal: Compare our approach, random testing
[Raz]

— Completeness (% of 42 detected?)
— Accuracy (% false positives?)

©2010 Fraunhofer USA Inc. 20

@ UNIVERSITY OF
Yy MARYLAND

Experimental Results

* Hypothesis: coverage-testing yields better invariants than
random testing

« Coverage results:

95% of inferred invariants true
97% of requirements inferred
Two missing requirements detected

« Random results:

55% of inferred invariants true
40% of requirements inferred

* Hypothesis confirmed

©2010 Fraunhofer USA Inc. 21

: UNIVERSITY OF
& MARYLAND
Summary

* |Intersection of formal methods, testing can
yield practical verification approaches

— Model-based testing
— Instrumentation-based verification

« Automated test generation can be used to
infer invariants

@201 University of Margland 22

