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Outline

@ Algorithmic Foundations

© Cancer: A short overview

© Regulatory pathways: Mechanistic modeling
e Signaling pathways: Multi-scale modeling
© Tumor progression: High-level modeling

@ Regression Analysis of Pancreatic Cancer Survival
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Algorithmic Foundations

Algorithmic Foundations

@ BioNetGen

ﬁ M. W. Sneddon, J. R. Faeder, T. Emonet. Efficient modeling, simulation and
coarse-graining of biological complexity with NFsim, Nature Methods, Vol. 8, No. 2,
2011.

@ Boolean Models
@ H. Gong, P. Zuliani, E. M. Clarke. Model Checking of a Diabetes-Cancer Model,

3rd International Symposium on Computational Models for Life Sciences, 2011.
@ Statistical Model Checking

@ E. M. Clarke, J. R. Faeder, C. Langmead, L. Harris, S. Jha, A. Legay. Statistical
model checking in biolab: Applications to the automated analysis of t-cell receptor
signaling pathway, Computational Methods in Systems Biology, 2008.
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Algorithmic Foundations

Algorithmic Foundations

@ Models from Data
o Mechanistic

@ S. Ryu, S. Lin, N. Ugel, M. Antoniotti, B. Mishra. Mathematical modeling of
the formation of apoptosome in intrinsic pathway of apoptosis, Systems and
Synthetic Biology Journal, vol. 2, no. 1-2, 2009.

e Phenomenological
@ N. Ramakrishnan, S. Tadepalli, L. T. Watson, R. F. Helm, M. Antoniotti, B.
Mishra. Reverse Engineering Dynamic Temporal Models of Biological

Processes and their Relationships,” , Proc. National Academy of Science, vol.
107, no. 28, 2010.
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Algorithmic Foundations

Algorithmic Foundations

@ Hybrid Model Checking

ﬁ C. Piazza, M. Antoniotti, V. Mysore, A. Policriti, F. Winkler, B. Mishra. Algorithmic
Algebraic Model Checking I: Challenges from Systems Biology, 17th International
Conference on Computer Aided Verification, 2005.

@ Supervisory Control

@ L. Olde Loohuis, A. Witzel, B. Mishra. Cancer Hallmark Automata, manuscript,
2011.

@ E. Asarin, O. Maler, A. Pnueli. Symbolic controller synthesis for discrete and timed
systems, Hybrid Systems I, 1995.
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Cancer: A short overview Disease of the Genome

Cancer as a Disease of the Genome

@ Oncogenes / Tumor Suppressor Genes
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Cancer pathways
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Cancer: A short overview Disease of the Genome

Cancer as a Disease of the Genome

Oncogenes / Tumor Suppressor Genes
Cancer pathways
Cancer phenotypes and progression (hallmarks)

Patient data and personalization
e The Cancer Genome Atlas, GOALIE, statistical analysis

Model checking on different levels of abstraction

Model-based therapy
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Outline

e Regulatory pathways: Mechanistic modeling
@ Background
o CMACS research
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Regulatory pathways: Mechanistic modeling Background

Single-cell Pathways in Cancer

@ Cancer can be understood in terms of various cell-autonomous
processes: Autophagy, Apoptosis, Mitosis

@ There are specific pathways controlling these processes

@ We have developed mechanistic models involving these pathways, e.g.,
ODEs, BioNetGen models, and Boolean models

@ Properties of these pathways can be model checked in order to
understand them
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Regulatory pathways: Mechanistic modeling CMACS research

HMGB1 Model

Inflammation
S Phase
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Regulatory pathways: Mechanistic modeling CMACS research

Boolean Model

Antigen

presenting
cell (APC)

<0
o ©

o 0o
Tumor secreted cytokines
(e.g., TGFB)

Regulatory T Helper T (Th)
(Treg) cells cells

2° 28
.. cytokines that Pancreatic cancer vaccine trial:

BB episto et al., Cancer Ther 6:955-964 (2008)

immune
response

immune
response
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Regulatory pathways: Mechanistic modeling

Model Simulation

1000 simulation
trajectories

Average trajectories of ten
elements for attractor
1010111001
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State transitions on
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Regulatory pathways: Mechanistic modeling CMACS research

Statistical Model Checking

@ In English:
p53 is expressed at low level in normal human cells

@ In temporal logic:
Prob>0oF*(G%(p53 < 3.3 - 10%))

@ Verification:

t(min) # Samples # Success Result Time (s)

400 53 49 True 597.59
500 23 22 True 271.76
600 22 22 True 263.79

Error probability = 0.001
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Regulatory pathways: Mechanistic modeling CMACS research

Contribution

First computational model for investigating HMGB1 and tumorigenesis;
it agrees well with HMGB1 experiments

@ Our model suggests a dose-dependent p53, CyclinD/E, NFkB response
curve to increasing HMGB1 stimulus

o this could be tested by future experiments

The model can provide a guideline for cancer researchers to design new
in vitro experiments

Statistical Model Checking automatically validates our model with
respect to known experimental results
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Signaling pathways: Multi-scale modeling
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Signaling pathways: Multi-scale modeling Background

Aberrant Inter-cell Signaling

Chemokines,
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Signaling pathways: Multi-scale modeling CMACS research

Boolean Network

249 states — activation —e inhibition
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Signaling pathways: Multi-scale modeling CMACS research

Model Checking

@ Do diabetes risk factors influence the risk of cancer or cancer
prognosis? We checked the CTL properties:

(1) AF(Proliferate) (1) EF(Proliferate)
(2) AF(Apoptosis) (2') EF(Apoptosis)
(3) AF(Resistance) (3') EF(Resistance)

@ Normal Cell:
o Properties 3 and 2/ — 3’ are true
o Diabetes risk factors can augment insulin resistance, but cell growth is
still regulated by the tumor suppressor proteins
e Cancer risk might not increase

@ Precancerous/Cancerous Cells (INK4a, ARF= 0):

o All but Property 2 are true
o Diabetes risk factors promote growth in precancerous or cancerous cells
and augment insulin resistance
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Signaling pathways: Multi-scale modeling CMACS research

Abstract Signaling Machine (ASM)

ASM simulates few concrete cells in mean field population model
Environment

@ Local information Z =< i1 ...i, >

@ Signaling environment £ =< e ...epn >
Cells

@ Concrete cells: signal transduction pathways, genes etc. state
X=<x1...x,>,xi€Rand x; >0

@ Abstract cells: abstract internal state ¥ € R

Abstract Concrete
take action Y—+3X+ A X=X+ A
send signal Y—>¥Xr+S X—=>X+S
change state

YHTIT+E =Y X+T+E—-X
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Signaling pathways: Multi-scale modeling CMACS research

Taxol Example

Concrete Cell

Cancer  Normal  Liver
Abstractly Signaling Cells Cells Cells
Dead Dead Dead
/ Dead Alive Dead
Dead Alive Alive
/ Alive Alive Alive
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Signaling pathways: Multi-scale modeling CMACS research

Hallmarks and Model Checking in ASM

I ASM simulation
|‘ Model Check Intracellular

Concrete Cell Data Signaling Properties Directly
A

\

| Hallmark\of Cell Population |

| Hallmark‘Progression Data |

Model Check Cancer Progression
Through Hallmarks

Bud Mishra (speaker) CMACS Pancreatic Cancer Challenge November 2011




Tumor progression: High-level modeling

Outline

© Tumor progression: High-level modeling
@ Background
@ CMACS research
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Tumor progression: High-level modeling Background

Hallmarks of Cancer

EGFR Cyclin-dependent
inhibitors kinase inhibitors

N 4

Sustaining Evading
Aerobic glycolysis proliferative growth Immune activating
inhibitors signaling suppressors anti-CTLA4 mAb

Deregulating Avoiding
cellular immune
energetics, X > destruction

: L ,

Proapoptotic Resisting > Enabling Telomerase
BH3 mimetics cell >\ < replicative Inhibitors
death y immortality

mutation inflammation

PARP Inducing Activating Selective anti-
inhibitors angiogenesis  invasion & inflammatory drugs
metastasis

Inhibitors of Inhibitors of
VEGF signaling HGF/c-Met

ﬁ D. Hanahan and R. A. Weinberg. Hallmarks of Cancer: The Next Generation, Cell, vol.
144, no. 5, pp. 646-674, 2011.

7y S E
Genome A R Tumor-
instability & Q o promoting

ﬁ J. Luo, N. L. Solimini, and S. J. Elledge. Principles of Cancer Therapy: Oncogene and
Non-oncogene Addiction, Cell, vol. 136, no. 5, pp. 823-837, Mar. 2009.
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Tumor progression: High-level modeling Background

Tumor Progression

A

Component  Acquired Capability Example of Mechanism

Self-sufficiency in growth signals Activate H-Ras oncogene

Insensitivity to anti-growth signals  Lose retinoblastoma suppressor

ﬂ Evading apoptosis Produce IGF survival factors
| 00 | Limitless replicative potential Turn on telomerase

m Sustained angiogenesis Preduce VEGF inducer
u Tissue invasion & metastasis Inactivate E-cadherin

B
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Id @ E3 E3 bl
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mor progression: High-level modeling Background

Growing Lists of Therapies
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@ J. Luo, N. L. Solimini, and S. J. Elledge. Principles of Cancer Therapy: Oncogene and
Non-oncogene Addiction, Cell, vol. 136, no. 5, pp. 823-837, Mar. 2009.
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Tumor progression: High-level modeling CMACS research

Cancer Hallmark Automata (CHA)

Formalism to represent the “hallmark view” of cancer
Represent progression models as Kripke structure / finite automaton

Personalize model to specific cancer type and stage of patient

Includes specifications of:

o disease progression through hallmarks

timings of transitions

o tests to observe disease state

o effects of drugs on the system

e costs of hallmarks and drugs (pain, monetary, ...)

Bud Mishra (speaker) CMACS Pancreatic Cancer Challenge November 2011



Tumor progression: High-level modeling CMACS research

Example CHA

[rooran tisru]
e S

i i
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E.g., AG—met will yield therapies that give
@ Rapamycin, or Avastin and 3BP, if the patient comes at early stage
@ Auvastin at stage 3 and 4 and PRIMA-1 at stage 9 and 14 if 3BP has high toxicity

@ 3BP at stage 3 and 4 and PRIMA-1 at stage 7 and 12 if the patient’s genome indicates
adverse reaction to Avastin

@ PRIMA-1 if the disease status is advanced but unknown
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Tumor progression: High-level modeling CMACS research

Timed CHA

A timed CHA consists of

@ a set of states, corresponding to hallmarks

@ a set of directed edges between states, labeled with clock constraints
@ an invariant for each clock and state (time limit)
°

a factor for each tuple of drug, clock and state (slow-down or speed-up)
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Tumor progression: High-level modeling CMACS research

Including Partial Observability

Timed state: pair of state and clock values
Belief set: set of timed states considered possible
Runs: possible sequences of timed states and corresponding belief sets

A therapy maps finite runs to therapeutic actions, namely
@ giving a certain drug or a cocktail, or

o performing a test to refine the current belief set

Therapies are assumed to be uniform:
Runs that agree on the belief set sequence map to the same action.

Therapies can be translated into conditional plans.
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Tumor progression: High-level modeling CMACS research

Epistemic-Temporal Goals

KAGSQOﬂmet

“It is known that metastasis (met) will not be reached within 20 years”

AG(ang — ((—met A AX-met) U Kang))

“Whenever the tumor acquires angiogenesis, this will be known (strictly)
before the tumor reaches metastasis”
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@ Regression Analysis of Pancreatic Cancer Survival
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Regression Analysis of Pancreatic Cancer Survival

Lasso Penalized Cox Regression for PanCan Survival

@ Most of existing studies focusing on the identification of the genetic
mutations and not considering the important clinical factor — survival

time

@ Selection of relevant genes to pancreatic cancer survival from the
genome

@ Lasso (Least Absolute Shrinkage and Selection Operator) penalized
partial likelihood function of the Cox model

@ Acceleration of regression coefficient estimation by coordinate descent

@ Capacity of handling underdetermined problems where the number of
genes far exceeds the number of cases

e Tuning constant chosen by cross-validation (data driven)

@ A handful of important genes retained in the final model with nonzero

coefficients

@ T. T. Wu and K. Lange. Coordinate descent algorithms for lasso penalized regression, The
Annals of Applied Statistics, vol. 2, no. 1, 2008.
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Regression Analysis of Pancreatic Cancer Survival

Pancreatic Cancer Data Analysis

Goal: To identify a gene signature of pancreatic cancer survival

Microarray data: 34 patients with primary PDAC tumors from Johns
Hopkins Medical Institutions, 49 from Northwestern Memorial Hospital,
and 19 from NorthShore University Health System

@ J. K. Stratford, D. J. Bentrem, J. M. Anderson et al. A Six-Gene Signature Predicts
Survival of Patients with Localized Pancreatic Ductal Adenocarcinoma, PLoS Med.,
vol. 7, 1000307, 2010.

66 out of the 102 PDAC patients died at the end of the study (35%
censored)

43,376 genes

Bud Mishra (speaker) CMACS Pancreatic Cancer Challenge November 2011 36 / 44



Regression Analysis of Pancreatic Cancer Survival

12-Gene Signature

12 genes identified to be directly related to the survival time of the primary
PDAC patients, and 8 confirmed to be cancer-related in previous cancer
studies:

Genes Functions

RPS13 Promote cell cycle transition from G1 to S

PCYT1B Regulates phosphatidylcholine biosynthesis

TREX2 Proapoptotic tumor suppressor, maintain the genomic integrity

ZNF233 Zinc finger protein, deregulated in kidney and pancreatic cancer
ATPAF1 Regulate oxidative phosphorylation pathway

RIMS1 Down-regulated in multidrug resistance gastric carcinoma

SLC43A2  Overexpressed in adenocarcinomas and squamous cell carcinoma

NRAP Up-regulated in human pancreatic cancer

SLC22A8, C4orf35, C6orf81, and C6orf58
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More Details on T-Cell Boolean Model

Model design

Model elements

r

Experiments Inﬂuen.ce sets

Expert
knowledge

Statistical model checker
Set of discrete values

More Influence table

4 traces

Nt
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Model rules

{

Model simulationq_j
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B
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More Details on T-Cell Boolean Model

Biological network Boolean network
. L
Proteins: X X, =X, Or X3
Py, Py Ps X, = not x; and x4
, X3" =X, and not x5
Protein states: a X
X1, Xo, X3 X
Synchronous updates Asynchronous updates

()

O

% state [X,X,X;
A)DQH\ s, | 000
s, | 001
\Lfﬂ\‘ }oﬂi\ s, | 010 )
s, | 011 /wx
L1y Q) | s | 100 ‘
s, | 101 ﬂ.ﬂﬂé\ )1114
110
x,(t+1) = x,(t) or xo(t) (22D :7 111 @/w
X,(t+1) = not x,(t) and x,(t) 8

X5(t+1) = x, (t) and not x,(t)
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More Details on T-Cell Boolean Model

Steady states and trajectories for two different scenarios (high and low antigen dose)

== ON - igh lovel == ON-highlovel

TCR
PI3K
PTEN
PIP3
AKT
MTORC1
S6K1
MTORC2
STATS
L2
CD25
FOXP3

Mlvalue = ON_HIGH
value = ON_ LOW
value = OFF
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Cox Model for Survival Data

@ Observed data: {(V},d;, Xi), where Y; = min{T;, G;}, 0; = I(T; < G),
XeRP, i=1,...,n

@ Cox proportional hazards regression model
P
h(tlX) = ho(t)exp (D 5))
j=1

@ D. R. Cox. Regression models and life-tables, Journal of the Royal Statistical Society.
Series B (Methodological) vol. 34, no. 2, 1972.

@ Partial likelihood of the Cox model

exp (X!5)
La(B) =
) iel—[D >_IcR, €XP (Xfﬂ)
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Lasso Penalized Partial Likelihood

Important genes related to PC survival can be selected via minimizing

—n(B) + PA(B)

where
o (n(B) = log{Ln(B)}/n is convex with positive second derivative

@ P)\(p) is the lasso (Least Absolute Shrinkage and Selection Operator)
penalty on 3

P
PA(B) =D 16
j=1
which is singular at the origin
@ Minimizing the above objective function can achieve the desired

sparsity hence variable selection
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Challenges for High-Dimensional Lasso Penalized Cox
Regression

One primary question

What is the most effective method of optimizing the lasso penalized
objective function for high-dimensional data?

e High-dimensionality (p > n)
e Standard methods of regression
o Matrix operations
o Number of arithmetic operations: O(p®)
@ Incapable of handling underdetermined problems with p > n
@ Nondifferentiability of the lasso penalty
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Challenges for High-Dimensional Lasso Penalized Cox
Regression

One primary question

What is the most effective method of optimizing the lasso penalized
objective function for high-dimensional data?

e High-dimensionality (p > n)
e Standard methods of regression
o Matrix operations
o Number of arithmetic operations: O(p®)
@ Incapable of handling underdetermined problems with p > n
@ Nondifferentiability of the lasso penalty

Coordinate descent can solve the two problems gracefully (Wu and Lange
2008)
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