Speeding up the Analysis of Complex
Software with Parallel Model Checking

what would it take to

achieve speedups like these?

time (s) 2500

\ CP: call Processing code
- \ ggrdag: network protoco|
‘ OS: Operating system code
\ E‘Ols Spacecraft planning code
1500 \
\
\
1000 ‘
\ 581 >G5
\
N y 335
242
¥ B. B

CP:1 CP:21 Gurdag:lGurdag:31 DEOS:1 DEOS:31 EO1:1 EDI1:21

parallel breadth-first search

PROS CONS
simplest search mode for a parallelization requires locks
logic model checker and synchronization

which can limit performance
often requires more memory
than a depth-first search
traditionally restricted to the
subclass of LTL defining
safety properties

basic reachability analysis
there is no ordering
requirement on state
exploration

relatively easy to parallelize
always finds the shortest invariants, absence of assertion

counter-example first violations, absence of deadlock,
etc.

1: eliminate locks

design a lock-free algorithm
lock-free & contention-free queues
a modified cache-aware hash-table

initial state 1
L]

one cache-line

[
\‘i’\‘—;\ " \, ----- \i\,;~~
/(N\
e (D) e
cores: . 7
/

—

4 e =3 N
o!lal—- _rﬁ o!lal-- _rﬁ (next) o![2l-—n!

2: requires (modestly) more memory

both the number of cores and the
size of RAM grows with Moore’s
curve: i.e., exponentially fast

but clock-speeds remain constant

source: Olukotun, Hammond, Sutter, Smith, Batten & Asanovic

this means:
memory is not the bottleneck

performance is linked to clockspeeds
unless we exploit parallelism

3: traditionally restricted to safety

safety: pisinvariant
liveness: [](p-><>q)—when p occurs, eventually g will occur as well

safety properties can be checked with a breadth-first search
liveness properties are harder:
they require a cycle detection algorithm
this can be done efficiently with a depth-first search
at up to twice the cost of a standard depth-first search

the best known methods for verifying liveness with a breadth-first search
carry excessive overhead:
the cost becomes quadractic, for instance (R=size of graph)
if R = 5.10°then 2.R =10.10°%, but R? = 25.103°
if R takes 2 seconds, 2.R takes 4 sec, and R? takes 107 seconds (11 days)

3: bounded search

a “piggyback” algorithm

I(p-><>.q) bounded liveness
when p happens, q will happen as well within n steps
<>(pnl,'q) signature of counter-examples
(J bounded search
©< ole we perform a check on paths of max length n
A R 7| PRrO:
| ; simple to implement
©< @ @ adds a small constant memory overhead for
propagating tags, but adds virtually no time
the costis: c.R with 1< ¢ <<2

O O O
CON:

"piggyback search” to limit memory overhead, we carry only 1 tag field
this means we can miss counter-examples: we
accept a small chance of incompleteness
remarkably: the algorithm works almost always

bfs liveness — two examples

piggyback algorithm
250
B DFS (Safety)
— m MDFS[iL 'r.,-etiem;.
BFS_PAR (Safety)
200 N BFS_PAR/BL (Liveness)
- 150 145
g
g
E 100
50 445 a4 166 372 /
~ N
0
/ anderson.6 EleuaturE.ﬂ\
49 million states 27 million states
reports liveness violations no liveness violations (worst case search)
(o PLI@CS) [1 ((((reqlo]==1))) || (("((p==0))) U (((p==0)) U

(("((p==0))) U (((p==0)) U (((p==0)) && ((cabin@open)))))))) ¢

Synopsis

. the Spj
submitted for publi cga t,_oenSPIn Model Checker” vy

Uovuo. v~ -

EO1: planning code ’

1000
581 568
500
335
242

l 805 64.5 56.6

0
cpP:1l CP:31 DEOS:1 DEOS:31 EO1:1 EDI1:31

Gurdag:1Gurdag:31

