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Runtime Verification

• Monitoring the runtime behavior of a system with respect to a
user-defined property

• Need to instrument system to select relevant events

• Online or offline (log-files)

• If online
• verdict returned after each event
• can give feedback to steer the system
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Runtime Verification in Theory

• Events record runtime behavior
• snapshots of state or actions performed

• A finite sequence of events is a trace τ

• A property φ denotes an event language L(φ) (a set of traces)

• τ satisfies φ iff τ ∈ L(φ)
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Runtime Verification in Theory

• Should detect success/failure before end of trace

• Standard approach is to use four-valued verdict domain

• Consider all possible extensions of a trace

current trace τ all suffixes σ Action

1 τ ∈ L(ϕ) τσ ∈ L(ϕ) stop with Success T
2 τ ∈ L(ϕ) unknown carry on monitoring Tp

3 τ /∈ L(ϕ) τσ /∈ L(ϕ) stop with Failure F
4 τ /∈ L(ϕ) unknown carry on monitoring Fp
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Runtime Verification in Practice

• Start with a system to monitor
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Runtime Verification in Practice

• Instrument the system to record relevant events
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Runtime Verification in Practice

• Generate a monitor from the property
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Runtime Verification in Practice

• Dispatch each received event to the monitor.
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Runtime Verification in Practice

• Compute a verdict for the trace received so far.
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Runtime Verification in Practice

• Possibly generate feedback to the system.
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Runtime Verification Applications

• Detect erroneous behavior after deployment (fault protection)

• Detect intrusion after deployment (security)

• Monitor as part of testing before deployment (test oracles)

• Program understanding
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Some Context

• Field started with propositional monitoring
• events are just strings

• Recently moved to parametric monitoring
• events include data values

• Solutions exist spanning the two classical dimensions
• Expressiveness of specification language
• Efficiency of monitoring algorithm

• This work is looking for the right combination
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The Propositional Approach : An Example

• Record propositional events, for example
• open, close

• Define a property over propositional events, for example

• LTL (finite-trace) �(open→©(¬open U close))

• RE (open.close)∗

• DFA
1 2

open

close

• Check if each trace prefix is in the language of the property
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Going Parametric

• Consider the code

File f1 = new File("manual.pdf");

File f2 = new File("readme.txt");

f1.open();

f2.open();

f2.close();

f1.close();

• Say we just focus on propositional events

open.open.close.close

• No good, we want to parameterize events with data values
and use those values in the specification

• Instead record the parametric trace

open(manual.pdf).open(readme.txt).close(readme.txt).close(manual.pdf)
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Parametric Properties

• Using the events
• open(f) when file f is opened
• close(f) when file f is closed

• the property becomes

1 2

open(f)

close(f)
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Instantiating Parametric Property

• Let f = readme.txt (a binding)

• Instantiated property becomes

1 2

open(readme.txt)

close(readme.txt)

• Given parametric trace

open(manual.pdf).open(readme.txt).close(readme.txt).close(manual.pdf)

• project to
open(readme.txt).close(readme.txt)



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Instantiating Parametric Property

• Let f = readme.txt (a binding)

• Instantiated property becomes

1 2

open(readme.txt)

close(readme.txt)

• Given parametric trace

open(manual.pdf).open(readme.txt).close(readme.txt).close(manual.pdf)

• project to
open(readme.txt).close(readme.txt)



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Instantiating Parametric Property

• Let f = readme.txt (a binding)

• Instantiated property becomes

1 2

open(readme.txt)

close(readme.txt)

• Given parametric trace

open(manual.pdf).open(readme.txt).close(readme.txt).close(manual.pdf)

• project to
open(readme.txt).close(readme.txt)



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Instantiating Parametric Property

• Let f = readme.txt (a binding)

• Instantiated property becomes

1 2

open(readme.txt)

close(readme.txt)

• Given parametric trace

open(manual.pdf).open(readme.txt).close(readme.txt).close(manual.pdf)

• project to
open(readme.txt).close(readme.txt)



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

From Parametric to Quantified

• Where do bindings come from?

• quantify over variables in parametric property

1 2

∀f open(f)

close(f)

• Universal and existential quantification

• What is the domain of quantification? (choice)

• Extract domain of quantification from trace

• How? (choice)

• Match events in parametric property with events in trace

• open(f) matches open(readme.txt) and open(manual.pdf)

[f 7→ { readme.txt, manual.pdf }]
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Using Data Values : A Task Monitoring Example

• All tasks must end phases in increasing order

• Events monitored: end(task,phase)

• Example trace

end(42, 5).end(42, 6).end(42, 3)

1 2

3∀item

end(task, max)
end(task, new) new>max

max :=new

end(task, new) new≤max
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Using Data Values : A Task Monitoring Example

1 2

3∀item

end(task, max)
end(task, new) new>max

max :=new

end(task, new) new≤max

• trace: end(42, 5).bid(42, 6).bid(42, 3)

• domain is [task 7→ { 42 }]
• partially instantiate parametric property with [task 7→42]

• to get Event Automaton

1 2

3

end(42, max)
end(42, new) new>max

max :=new

end(42, new) new≤max

• keep local state per instantiated parametric property

• treat quantified and unquantified variables differently
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Another Example

• Every object can only be locked once at any one time

1 2 3

∀thread ,∀obj

lock(thread , obj)

unlock(thread , obj)

lock(thread2 , obj)

• lock is used with two different lists of formal parameters
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Event Automata : Definition

Bind = [Var ⇁ Val ]
Guard = [Bind → B]
Assign = [Bind → Bind ]

Definition (Event Automaton)

An Event Automaton 〈Q,A, δ, q0,F 〉 is a tuple where

• Q is the set of states,

• A ⊆ Event is the alphabet,

• δ ∈ (Q ×A× Guard ×Assign × Q) is the transition set,

• q0 is the initial state, and

• F ⊆ Q is the set of final states.
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Quantified Event Automata : Definition

Definition (Quantified Event Automaton)

A QEA is a pair 〈Λ,E〉 where

• E is an EA, and

• Λ ∈ ({∀, ∃}× variables(E)× Guard)∗ is a list of quantified
variables with guards.
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Monitoring QEA

• Previous description is big-step (whole trace)

• Want to process a trace an event at a time

• Small-step monitoring construction
• Build up domain on the fly
• Generate new bindings on the fly
• Track configurations associated with bindings
• Check acceptance

• Efficient algorithms
• Lookup relevant monitors from event
• Data-structures to deal with matching
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TraceContract

• An internal Scala DSL (API)

• Expressive and easy to implement and modify

• Based on formula rewriting: p U q = q ∨ (p ∧©(p U q))

• (To be) used by LADEE:
Lunar Atmosphere and Dust Environment Explorer
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The Task Monitor Example

trait Event
case class End(task: Int , step : Int ) extends Event

class TaskMonitor extends Monitor[Event] {
always {

case End(task, step1) =>
watch {

case End(‘task ‘, step2) => step2 > step1
}

}
}
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Analyzing a Trace

object Test extends Application {
val m = new TaskMonitor

val trace = List(
End(1, 2),
End(2, 1),
End(1, 3),
End(2, 2),
End(1, 1))

m. verify ( trace)
}
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Implementation of TraceContract

trait Monitor[E] extends RuleSystem {
var current : state = True

trait state {
def apply(e: E): state
def and(that: state ) = And(this, that) reduce
def or(that : state ) = Or(this, that) reduce
}

type Body = PartialFunction[E, state ]

case class watch(b: Body) extends state {
def apply(e: E) = if (b. isDefinedAt(e)) b(e) else this
}
...

}
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Implementation using Rewriting

case class repeat(b: Body) extends state {
def apply(e: E) =

if (b. isDefinedAt(e)) And(b(e), this) reduce else this
}

def init (s : state ) {current = s}

def always(b: Body) = init(repeat(b))

def apply(e: E) {
current = current(e)
if ( current == False) println (”∗∗∗ safety violation ”)

}
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ScalaRules

• An internal Scala DSL (API)

• Implements the RETE algorithm for rule-based systems

• Efficient pattern matching algorithm for production rule
systems

• Purpose is to investigate relevance for runtime verification
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The Lock Monitor Example

class LockMonitor extends ScalaRules {
rule (”goodLock”) when

exists (’ kind−>”lock”, ’thread−>’t, ’obj−>’o) then
add(’kind−>”Locked”, ’thread−>’t, ’obj−>’o)

rule (”badLock”) when
exists (’ kind−>”lock”, ’thread−>’t1, ’obj−>’o) and
exists (’ kind−>”Locked”, ’thread−>’t2, ’obj−>’o) then
error

rule (”unlock”) when
exists (’ kind−>”unlock”, ’thread−>’t, ’obj−>’o) and
exists (’x )(’ kind−>”Locked”, ’thread−>’t, ’obj−>’o) then
rem(’x)

}
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Running It

object Test extends Application {
val r = new LockMonitor
r .addFact(’kind−>”lock”, ’thread−>1, ’obj−>42)
r .addFact(’kind −> ”unlock”, ’thread−>1, ’obj−>42)
r .addFact(’kind −> ”lock”, ’thread−>1, ’obj−>42)
r .addFact(’kind −> ”lock”, ’thread−>2, ’obj−>42)
}
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RETE Network for a Rule

rule: a(x), b(x , y), c(x , y)⇒ action
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Future Work

• Theoretic foundations
• QEA
• TraceContract

• Implementation
• Implement efficient monitoring algorithm for QEA
• Explore utility of RETE algorithm and modifications

• Application
• Support application of TraceContract within LADEE mission
• Apply to logs for JPL mission

• Related topics
• Inferring properties from runs
• Annotating logs (Rajeev Joshi)
• Program visualization
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Conclusion

• Efficient state of the art systems lack expressiveness

• We attempt to increase expressiveness while staying efficient

• Result should be efficient and expressive RV system

• RV is a scalable way to understand complex systems

• Scala as prototyping language + internal DSLs speed up
development
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• Aspect-Oriented Instrumentation with GCC
J. Seyster, K. Dixit, X. Huang, R. Grosu, K. Havelund, S. A.
Smolka, S. D. Stoller, and E. Zadok
RV 2010, St. Julians, Malta.

• TraceContract: A Scala DSL for Trace Analysis
H. Barringer and K. Havelund
FM 2011, Limerick, Ireland

• Runtime Verification with State Estimation
S. D. Stoller, E. Bartocci, J. Seyster, R. Grosu, K. Havelund, S. A.
Smolka, and E. Zadok
RV 2011, San Francisco, California, USA.

• Quantified Event Automata:
Towards Expressive and Efficient Runtime Monitors
H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. Rydeheard
Submitted for publication, under review. March 2012.
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