
Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Towards Efficient and Expressive
Runtime Monitors

Understanding Complex Systems by Monitoring their Execution

Klaus Havelund
Jet Propulsion Laboratory

California Institute of Technology

April 20, 2012



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

In Collaboration With

• University of Manchester, UK
• Howard Barringer (Professor)
• Giles Reger (Ph.D. student)
• David Rydeheard (Dr.)

• University of Grenoble, France
• Yliès Falcone (Associate Professor)



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Contents

• What Runtime Verification is

• From propositional to parametric properties

• Quantified Event Automata (an automaton approach)

• TraceContract (a formula rewriting approach)

• ScalaRules (a production rule system approach)

• Conclusion



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Runtime Verification

• Monitoring the runtime behavior of a system with respect to a
user-defined property

• Need to instrument system to select relevant events

• Online or offline (log-files)

• If online
• verdict returned after each event
• can give feedback to steer the system



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Runtime Verification in Theory

• Events record runtime behavior
• snapshots of state or actions performed

• A finite sequence of events is a trace τ

• A property φ denotes an event language L(φ) (a set of traces)

• τ satisfies φ iff τ ∈ L(φ)



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Runtime Verification in Theory

• Should detect success/failure before end of trace

• Standard approach is to use four-valued verdict domain

• Consider all possible extensions of a trace

current trace τ all suffixes σ Action

1 τ ∈ L(ϕ) τσ ∈ L(ϕ) stop with Success T
2 τ ∈ L(ϕ) unknown carry on monitoring Tp

3 τ /∈ L(ϕ) τσ /∈ L(ϕ) stop with Failure F
4 τ /∈ L(ϕ) unknown carry on monitoring Fp



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Runtime Verification in Practice

• Start with a system to monitor



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Runtime Verification in Practice

• Instrument the system to record relevant events



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Runtime Verification in Practice

• Generate a monitor from the property



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Runtime Verification in Practice

• Dispatch each received event to the monitor.



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Runtime Verification in Practice

• Compute a verdict for the trace received so far.



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Runtime Verification in Practice

• Possibly generate feedback to the system.



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Runtime Verification Applications

• Detect erroneous behavior after deployment (fault protection)

• Detect intrusion after deployment (security)

• Monitor as part of testing before deployment (test oracles)

• Program understanding



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Some Context

• Field started with propositional monitoring
• events are just strings

• Recently moved to parametric monitoring
• events include data values

• Solutions exist spanning the two classical dimensions
• Expressiveness of specification language
• Efficiency of monitoring algorithm

• This work is looking for the right combination



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

The Propositional Approach : An Example

• Record propositional events, for example
• open, close

• Define a property over propositional events, for example

• LTL (finite-trace) �(open→©(¬open U close))

• RE (open.close)∗

• DFA
1 2

open

close

• Check if each trace prefix is in the language of the property



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Going Parametric

• Consider the code

File f1 = new File("manual.pdf");

File f2 = new File("readme.txt");

f1.open();

f2.open();

f2.close();

f1.close();

• Say we just focus on propositional events

open.open.close.close

• No good, we want to parameterize events with data values
and use those values in the specification

• Instead record the parametric trace

open(manual.pdf).open(readme.txt).close(readme.txt).close(manual.pdf)



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Going Parametric

• Consider the code

File f1 = new File("manual.pdf");

File f2 = new File("readme.txt");

f1.open();

f2.open();

f2.close();

f1.close();

• Say we just focus on propositional events

open.open.close.close

• No good, we want to parameterize events with data values
and use those values in the specification

• Instead record the parametric trace

open(manual.pdf).open(readme.txt).close(readme.txt).close(manual.pdf)



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Going Parametric

• Consider the code

File f1 = new File("manual.pdf");

File f2 = new File("readme.txt");

f1.open();

f2.open();

f2.close();

f1.close();

• Say we just focus on propositional events

open.open.close.close

• No good, we want to parameterize events with data values
and use those values in the specification

• Instead record the parametric trace

open(manual.pdf).open(readme.txt).close(readme.txt).close(manual.pdf)



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Going Parametric

• Consider the code

File f1 = new File("manual.pdf");

File f2 = new File("readme.txt");

f1.open();

f2.open();

f2.close();

f1.close();

• Say we just focus on propositional events

open.open.close.close

• No good, we want to parameterize events with data values
and use those values in the specification

• Instead record the parametric trace

open(manual.pdf).open(readme.txt).close(readme.txt).close(manual.pdf)



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Parametric Properties

• Using the events
• open(f) when file f is opened
• close(f) when file f is closed

• the property becomes

1 2

open(f)

close(f)



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Parametric Properties

• Using the events
• open(f) when file f is opened
• close(f) when file f is closed

• the property becomes

1 2

open(f)

close(f)



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Instantiating Parametric Property

• Let f = readme.txt (a binding)

• Instantiated property becomes

1 2

open(readme.txt)

close(readme.txt)

• Given parametric trace

open(manual.pdf).open(readme.txt).close(readme.txt).close(manual.pdf)

• project to
open(readme.txt).close(readme.txt)



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Instantiating Parametric Property

• Let f = readme.txt (a binding)

• Instantiated property becomes

1 2

open(readme.txt)

close(readme.txt)

• Given parametric trace

open(manual.pdf).open(readme.txt).close(readme.txt).close(manual.pdf)

• project to
open(readme.txt).close(readme.txt)



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Instantiating Parametric Property

• Let f = readme.txt (a binding)

• Instantiated property becomes

1 2

open(readme.txt)

close(readme.txt)

• Given parametric trace

open(manual.pdf).open(readme.txt).close(readme.txt).close(manual.pdf)

• project to
open(readme.txt).close(readme.txt)



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Instantiating Parametric Property

• Let f = readme.txt (a binding)

• Instantiated property becomes

1 2

open(readme.txt)

close(readme.txt)

• Given parametric trace

open(manual.pdf).open(readme.txt).close(readme.txt).close(manual.pdf)

• project to
open(readme.txt).close(readme.txt)



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

From Parametric to Quantified

• Where do bindings come from?

• quantify over variables in parametric property

1 2

∀f open(f)

close(f)

• Universal and existential quantification

• What is the domain of quantification? (choice)

• Extract domain of quantification from trace

• How? (choice)

• Match events in parametric property with events in trace

• open(f) matches open(readme.txt) and open(manual.pdf)

[f 7→ { readme.txt, manual.pdf }]



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

From Parametric to Quantified

• Where do bindings come from?

• quantify over variables in parametric property

1 2

∀f open(f)

close(f)

• Universal and existential quantification

• What is the domain of quantification? (choice)

• Extract domain of quantification from trace

• How? (choice)

• Match events in parametric property with events in trace

• open(f) matches open(readme.txt) and open(manual.pdf)

[f 7→ { readme.txt, manual.pdf }]



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

From Parametric to Quantified

• Where do bindings come from?

• quantify over variables in parametric property

1 2

∀f open(f)

close(f)

• Universal and existential quantification

• What is the domain of quantification? (choice)

• Extract domain of quantification from trace

• How? (choice)

• Match events in parametric property with events in trace

• open(f) matches open(readme.txt) and open(manual.pdf)

[f 7→ { readme.txt, manual.pdf }]



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

From Parametric to Quantified

• Where do bindings come from?

• quantify over variables in parametric property

1 2

∀f open(f)

close(f)

• Universal and existential quantification

• What is the domain of quantification? (choice)

• Extract domain of quantification from trace

• How? (choice)

• Match events in parametric property with events in trace

• open(f) matches open(readme.txt) and open(manual.pdf)

[f 7→ { readme.txt, manual.pdf }]



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

From Parametric to Quantified

• Where do bindings come from?

• quantify over variables in parametric property

1 2

∀f open(f)

close(f)

• Universal and existential quantification

• What is the domain of quantification? (choice)

• Extract domain of quantification from trace

• How? (choice)

• Match events in parametric property with events in trace

• open(f) matches open(readme.txt) and open(manual.pdf)

[f 7→ { readme.txt, manual.pdf }]



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

From Parametric to Quantified

• Where do bindings come from?

• quantify over variables in parametric property

1 2

∀f open(f)

close(f)

• Universal and existential quantification

• What is the domain of quantification? (choice)

• Extract domain of quantification from trace

• How? (choice)

• Match events in parametric property with events in trace

• open(f) matches open(readme.txt) and open(manual.pdf)

[f 7→ { readme.txt, manual.pdf }]



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

From Parametric to Quantified

• Where do bindings come from?

• quantify over variables in parametric property

1 2

∀f open(f)

close(f)

• Universal and existential quantification

• What is the domain of quantification? (choice)

• Extract domain of quantification from trace

• How? (choice)

• Match events in parametric property with events in trace

• open(f) matches open(readme.txt) and open(manual.pdf)

[f 7→ { readme.txt, manual.pdf }]



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

From Parametric to Quantified

• Where do bindings come from?

• quantify over variables in parametric property

1 2

∀f open(f)

close(f)

• Universal and existential quantification

• What is the domain of quantification? (choice)

• Extract domain of quantification from trace

• How? (choice)

• Match events in parametric property with events in trace

• open(f) matches open(readme.txt) and open(manual.pdf)

[f 7→ { readme.txt, manual.pdf }]



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

From Parametric to Quantified

• Where do bindings come from?

• quantify over variables in parametric property

1 2

∀f open(f)

close(f)

• Universal and existential quantification

• What is the domain of quantification? (choice)

• Extract domain of quantification from trace

• How? (choice)

• Match events in parametric property with events in trace

• open(f) matches open(readme.txt) and open(manual.pdf)

[f 7→ { readme.txt, manual.pdf }]



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Using Data Values : A Task Monitoring Example

• All tasks must end phases in increasing order

• Events monitored: end(task,phase)

• Example trace

end(42, 5).end(42, 6).end(42, 3)

1 2

3∀item

end(task, max)
end(task, new) new>max

max :=new

end(task, new) new≤max



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Using Data Values : A Task Monitoring Example

• All tasks must end phases in increasing order

• Events monitored: end(task,phase)

• Example trace

end(42, 5).end(42, 6).end(42, 3)

1 2

3∀item

end(task, max)
end(task, new) new>max

max :=new

end(task, new) new≤max



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Using Data Values : A Task Monitoring Example

• All tasks must end phases in increasing order

• Events monitored: end(task,phase)

• Example trace

end(42, 5).end(42, 6).end(42, 3)

1 2

3∀item

end(task, max)
end(task, new) new>max

max :=new

end(task, new) new≤max



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Using Data Values : A Task Monitoring Example

• All tasks must end phases in increasing order

• Events monitored: end(task,phase)

• Example trace

end(42, 5).end(42, 6).end(42, 3)

1 2

3∀item

end(task, max)
end(task, new) new>max

max :=new

end(task, new) new≤max



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Using Data Values : A Task Monitoring Example

1 2

3∀item

end(task, max)
end(task, new) new>max

max :=new

end(task, new) new≤max

• trace: end(42, 5).bid(42, 6).bid(42, 3)

• domain is [task 7→ { 42 }]
• partially instantiate parametric property with [task 7→42]

• to get Event Automaton

1 2

3

end(42, max)
end(42, new) new>max

max :=new

end(42, new) new≤max

• keep local state per instantiated parametric property

• treat quantified and unquantified variables differently



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Using Data Values : A Task Monitoring Example

1 2

3∀item

end(task, max)
end(task, new) new>max

max :=new

end(task, new) new≤max

• trace: end(42, 5).bid(42, 6).bid(42, 3)

• domain is [task 7→ { 42 }]

• partially instantiate parametric property with [task 7→42]

• to get Event Automaton

1 2

3

end(42, max)
end(42, new) new>max

max :=new

end(42, new) new≤max

• keep local state per instantiated parametric property

• treat quantified and unquantified variables differently



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Using Data Values : A Task Monitoring Example

1 2

3∀item

end(task, max)
end(task, new) new>max

max :=new

end(task, new) new≤max

• trace: end(42, 5).bid(42, 6).bid(42, 3)

• domain is [task 7→ { 42 }]
• partially instantiate parametric property with [task 7→42]

• to get Event Automaton

1 2

3

end(42, max)
end(42, new) new>max

max :=new

end(42, new) new≤max

• keep local state per instantiated parametric property

• treat quantified and unquantified variables differently



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Using Data Values : A Task Monitoring Example

1 2

3∀item

end(task, max)
end(task, new) new>max

max :=new

end(task, new) new≤max

• trace: end(42, 5).bid(42, 6).bid(42, 3)

• domain is [task 7→ { 42 }]
• partially instantiate parametric property with [task 7→42]

• to get Event Automaton

1 2

3

end(42, max)
end(42, new) new>max

max :=new

end(42, new) new≤max

• keep local state per instantiated parametric property

• treat quantified and unquantified variables differently



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Using Data Values : A Task Monitoring Example

1 2

3∀item

end(task, max)
end(task, new) new>max

max :=new

end(task, new) new≤max

• trace: end(42, 5).bid(42, 6).bid(42, 3)

• domain is [task 7→ { 42 }]
• partially instantiate parametric property with [task 7→42]

• to get Event Automaton

1 2

3

end(42, max)
end(42, new) new>max

max :=new

end(42, new) new≤max

• keep local state per instantiated parametric property

• treat quantified and unquantified variables differently



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Using Data Values : A Task Monitoring Example

1 2

3∀item

end(task, max)
end(task, new) new>max

max :=new

end(task, new) new≤max

• trace: end(42, 5).bid(42, 6).bid(42, 3)

• domain is [task 7→ { 42 }]
• partially instantiate parametric property with [task 7→42]

• to get Event Automaton

1 2

3

end(42, max)
end(42, new) new>max

max :=new

end(42, new) new≤max

• keep local state per instantiated parametric property

• treat quantified and unquantified variables differently



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Another Example

• Every object can only be locked once at any one time

1 2 3

∀thread ,∀obj

lock(thread , obj)

unlock(thread , obj)

lock(thread2 , obj)

• lock is used with two different lists of formal parameters



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Another Example

• Every object can only be locked once at any one time

1 2 3

∀thread ,∀obj

lock(thread , obj)

unlock(thread , obj)

lock(thread2 , obj)

• lock is used with two different lists of formal parameters



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Event Automata : Definition

Bind = [Var ⇁ Val ]
Guard = [Bind → B]
Assign = [Bind → Bind ]

Definition (Event Automaton)

An Event Automaton 〈Q,A, δ, q0,F 〉 is a tuple where

• Q is the set of states,

• A ⊆ Event is the alphabet,

• δ ∈ (Q ×A× Guard ×Assign × Q) is the transition set,

• q0 is the initial state, and

• F ⊆ Q is the set of final states.



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Quantified Event Automata : Definition

Definition (Quantified Event Automaton)

A QEA is a pair 〈Λ,E〉 where

• E is an EA, and

• Λ ∈ ({∀, ∃}× variables(E)× Guard)∗ is a list of quantified
variables with guards.



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Monitoring QEA

• Previous description is big-step (whole trace)

• Want to process a trace an event at a time

• Small-step monitoring construction
• Build up domain on the fly
• Generate new bindings on the fly
• Track configurations associated with bindings
• Check acceptance

• Efficient algorithms
• Lookup relevant monitors from event
• Data-structures to deal with matching



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Monitoring QEA

• Previous description is big-step (whole trace)

• Want to process a trace an event at a time

• Small-step monitoring construction
• Build up domain on the fly
• Generate new bindings on the fly
• Track configurations associated with bindings
• Check acceptance

• Efficient algorithms
• Lookup relevant monitors from event
• Data-structures to deal with matching



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Monitoring QEA

• Previous description is big-step (whole trace)

• Want to process a trace an event at a time

• Small-step monitoring construction

• Build up domain on the fly
• Generate new bindings on the fly
• Track configurations associated with bindings
• Check acceptance

• Efficient algorithms
• Lookup relevant monitors from event
• Data-structures to deal with matching



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Monitoring QEA

• Previous description is big-step (whole trace)

• Want to process a trace an event at a time

• Small-step monitoring construction
• Build up domain on the fly
• Generate new bindings on the fly
• Track configurations associated with bindings
• Check acceptance

• Efficient algorithms
• Lookup relevant monitors from event
• Data-structures to deal with matching



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Monitoring QEA

• Previous description is big-step (whole trace)

• Want to process a trace an event at a time

• Small-step monitoring construction
• Build up domain on the fly
• Generate new bindings on the fly
• Track configurations associated with bindings
• Check acceptance

• Efficient algorithms

• Lookup relevant monitors from event
• Data-structures to deal with matching



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Monitoring QEA

• Previous description is big-step (whole trace)

• Want to process a trace an event at a time

• Small-step monitoring construction
• Build up domain on the fly
• Generate new bindings on the fly
• Track configurations associated with bindings
• Check acceptance

• Efficient algorithms
• Lookup relevant monitors from event
• Data-structures to deal with matching



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

TraceContract

• An internal Scala DSL (API)

• Expressive and easy to implement and modify

• Based on formula rewriting: p U q = q ∨ (p ∧©(p U q))

• (To be) used by LADEE:
Lunar Atmosphere and Dust Environment Explorer



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

TraceContract

• An internal Scala DSL (API)

• Expressive and easy to implement and modify

• Based on formula rewriting: p U q = q ∨ (p ∧©(p U q))

• (To be) used by LADEE:
Lunar Atmosphere and Dust Environment Explorer



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

TraceContract

• An internal Scala DSL (API)

• Expressive and easy to implement and modify

• Based on formula rewriting: p U q = q ∨ (p ∧©(p U q))

• (To be) used by LADEE:
Lunar Atmosphere and Dust Environment Explorer



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

TraceContract

• An internal Scala DSL (API)

• Expressive and easy to implement and modify

• Based on formula rewriting: p U q = q ∨ (p ∧©(p U q))

• (To be) used by LADEE:
Lunar Atmosphere and Dust Environment Explorer



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

The Task Monitor Example

trait Event
case class End(task: Int , step : Int ) extends Event

class TaskMonitor extends Monitor[Event] {
always {

case End(task, step1) =>
watch {

case End(‘task ‘, step2) => step2 > step1
}

}
}



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Analyzing a Trace

object Test extends Application {
val m = new TaskMonitor

val trace = List(
End(1, 2),
End(2, 1),
End(1, 3),
End(2, 2),
End(1, 1))

m. verify ( trace)
}



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Implementation of TraceContract

trait Monitor[E] extends RuleSystem {
var current : state = True

trait state {
def apply(e: E): state
def and(that: state ) = And(this, that) reduce
def or(that : state ) = Or(this, that) reduce
}

type Body = PartialFunction[E, state ]

case class watch(b: Body) extends state {
def apply(e: E) = if (b. isDefinedAt(e)) b(e) else this
}
...

}



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Implementation using Rewriting

case class repeat(b: Body) extends state {
def apply(e: E) =

if (b. isDefinedAt(e)) And(b(e), this) reduce else this
}

def init (s : state ) {current = s}

def always(b: Body) = init(repeat(b))

def apply(e: E) {
current = current(e)
if ( current == False) println (”∗∗∗ safety violation ”)

}



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

ScalaRules

• An internal Scala DSL (API)

• Implements the RETE algorithm for rule-based systems

• Efficient pattern matching algorithm for production rule
systems

• Purpose is to investigate relevance for runtime verification



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

ScalaRules

• An internal Scala DSL (API)

• Implements the RETE algorithm for rule-based systems

• Efficient pattern matching algorithm for production rule
systems

• Purpose is to investigate relevance for runtime verification



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

ScalaRules

• An internal Scala DSL (API)

• Implements the RETE algorithm for rule-based systems

• Efficient pattern matching algorithm for production rule
systems

• Purpose is to investigate relevance for runtime verification



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

ScalaRules

• An internal Scala DSL (API)

• Implements the RETE algorithm for rule-based systems

• Efficient pattern matching algorithm for production rule
systems

• Purpose is to investigate relevance for runtime verification



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

The Lock Monitor Example

class LockMonitor extends ScalaRules {
rule (”goodLock”) when

exists (’ kind−>”lock”, ’thread−>’t, ’obj−>’o) then
add(’kind−>”Locked”, ’thread−>’t, ’obj−>’o)

rule (”badLock”) when
exists (’ kind−>”lock”, ’thread−>’t1, ’obj−>’o) and
exists (’ kind−>”Locked”, ’thread−>’t2, ’obj−>’o) then
error

rule (”unlock”) when
exists (’ kind−>”unlock”, ’thread−>’t, ’obj−>’o) and
exists (’x )(’ kind−>”Locked”, ’thread−>’t, ’obj−>’o) then
rem(’x)

}



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Running It

object Test extends Application {
val r = new LockMonitor
r .addFact(’kind−>”lock”, ’thread−>1, ’obj−>42)
r .addFact(’kind −> ”unlock”, ’thread−>1, ’obj−>42)
r .addFact(’kind −> ”lock”, ’thread−>1, ’obj−>42)
r .addFact(’kind −> ”lock”, ’thread−>2, ’obj−>42)
}



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

RETE Network for a Rule

rule: a(x), b(x , y), c(x , y)⇒ action



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Future Work

• Theoretic foundations
• QEA
• TraceContract

• Implementation
• Implement efficient monitoring algorithm for QEA
• Explore utility of RETE algorithm and modifications

• Application
• Support application of TraceContract within LADEE mission
• Apply to logs for JPL mission

• Related topics
• Inferring properties from runs
• Annotating logs (Rajeev Joshi)
• Program visualization



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Conclusion

• Efficient state of the art systems lack expressiveness

• We attempt to increase expressiveness while staying efficient

• Result should be efficient and expressive RV system

• RV is a scalable way to understand complex systems

• Scala as prototyping language + internal DSLs speed up
development



Runtime Verification Going Parametric QEA TraceContract ScalaRules Conclusion

Publications

• Aspect-Oriented Instrumentation with GCC
J. Seyster, K. Dixit, X. Huang, R. Grosu, K. Havelund, S. A.
Smolka, S. D. Stoller, and E. Zadok
RV 2010, St. Julians, Malta.

• TraceContract: A Scala DSL for Trace Analysis
H. Barringer and K. Havelund
FM 2011, Limerick, Ireland

• Runtime Verification with State Estimation
S. D. Stoller, E. Bartocci, J. Seyster, R. Grosu, K. Havelund, S. A.
Smolka, and E. Zadok
RV 2011, San Francisco, California, USA.

• Quantified Event Automata:
Towards Expressive and Efficient Runtime Monitors
H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. Rydeheard
Submitted for publication, under review. March 2012.


	Runtime Verification
	Going Parametric
	QEA
	TraceContract
	ScalaRules
	Conclusion

