0-Complete Reachability Analysis for Nonlinear Hybrid Systems

Sicun (Sean) Gao
Carnegie Mellon University

CMACS Pl Meeting
4-27-2012

Joint work with Edmund Clarke and Jeremy Avigad



Model Checking, Reachable Set Computation, Differential Logics

> Cyber-physical Systems: Combine physics and information-processing.
» Different verification techniques are suitable for different tasks.

> Differential Logics: Verify the logical frameworks.

> Reachable Set Computation: Visualize complete dynamics.

> Model Checking: Return counterexamples.

Reachable Set Computation mic Log
Geometric Approximation (Verification)
(Debugging/Verification)

Continuous Dynamics [l Automaton Model Logical Frameworks
Control Theory Embedded Code High-Level Design

Model Checking
Program Analysis
(Debugging/verification)




Hybrid System Example

» Simplified Controller of an automated guided vehicle [Lee and Seshia,
2011]

o) = 1Dcoshir) i) = 10cosdlr)
F) = 10sin8(r) ) = 10sia8(r)
(e x o)~ o
elt) FiEORI0)] eli) Flaledvlen)
—sfop Aelr) > £
stop stop Ale(1)] < & o)
|
Vehicle wtop A elT) > &
B
star i i)
P r
¥0)
8(0)
o helr) < —&
=0 i) = 10cesBly)

1DsinB{r)




Hybrid Systems

H = (X, Q, Init, Flow, Jump)
> A state space X C R* and a finite set of modes Q.
> Init C @ x X: initial configurations
> Flow :C @ x X — TX: continuous flows

> Each mode q is equipped with differential equations Z—f = ﬁl(f, t).

> Jump:C Q x X — 29%X: discrete jumps

> The system can be switched from (g, %) to (maybe multiple) (¢, "),
resetting modes and variables.

Continuous flows are interleaved with discrete jumps.



Bounded Model Checking

The idea of bounded model checking is the following:
» The behavior of a transition system can be encoded as logic formulas.
> Init(Zo) A /\fZO(Transition(fi,fiﬂ)) A Unsafe(Zk41)?

> Very fast (SAT/SMT) solvers can be used for deciding such formulas (say
yes or no).

> The usual point of view is that it only works for discrete systems.

» Extremely successful in the hardware design domain.




Encoding Continuous Dynamics

. . dE(t 2 o
» Continuous Dynamics: x ): (Z(t),1)

» The solution curve:
a:R— X, oz(t):oe(O)—l—/

t
0

—

Flals), )ds.

> Define the predicate (probably no analytic forms)
[Flow  (Zo, t, Z)]™ = {(Zo,t, Z) : a(0) = o, a(t) = &}

Reachability:

%o, &, t. (Init(Zo) A Flowy(Zo, t, ) A Unsafe(Z)) ?




Encoding Bounded Reachability for Hybrid Systems

For hybrid systems we combine continuous and discrete behaviors:

ll‘#

> is reachable after after O discrete jumps”:

Reach’(Z) := 3o, t. [Init(Zo) A Flow(io, t, T)]

> Inductively, “T is reachable after k& + 1 discrete jumps”:
Reach” ! () := 3%y, &, t. [Reach® (&) A Jump(Zy, T},) A Flow(Zy, t, 7)]

(Some details are omitted.)

Reachability within n discrete jumps:

\/ Reach’(Z) A Unsafe()) ?



Decision Procedures over Reals

» The Flow and Jump predicates in the formulas require a rich signature of
nonlinear functions.

> polynomials
> exponentiation and trigonometric functions
» solutions of ODEs, mostly no analytic forms
» To handle naive unrolling, the arithmetic theory is way less than enough.

> In realistic systems at least some linear dynamical systems occur.

> Various techniques have been developed to encode interesting
behaviors in arithmetic; but of course not a large part of them.

(We will discuss invariant-based reasoning later.)

8/33



Difficulty with Symbolic Decision Procedures

We are all aware of difficulties of symbolic decision procedures over reals when
nonlinear functions are involved.

> For the theory of nonlinear arithmetic:

> Double-exponential lower bound for quantifier elimination (PSPACE
for 31).

> Very active research in the past thirty years.

> Available solvers: challenged by formulas with ten variables.
> The general first-order theory over exp, sin, ODEs, ...

> Wildly undecidable.

> Is formal verification impossible because of this?

9/33



Scaling up: Use Numerical Methods?

However, large systems of real equalities/inequalities/ODEs are numerically
solved routinely in scientific computing.

> They are usually regarded inappropriate for verification because of the
inevitable numerical errors.

> (Platzer and Clarke, HSCC 2008)

> But isn't there any way to use them?

Let’s start by formalizing “numerical algorithms”.




Numerical Computability

What does it mean to say a function f over reals is “numerically computable”?

> There exists an algorithm My, such that given a good approximation of z,
My can find a good approximation of f(z).

> "“A real function is computable if we can draw it faithfully.”

» This leads to Computable Analysis (a.k.a. Type-Il Computability) over real
numbers. [A. Turing, A. Grzegorczyk, K. Weihrauch, S. Cook]




Type-Il Turing Machines

> Any real number a is encodable by a name v, : N — Q satisfying

Vi, Ja—ya(i)] < 27

» A Type-ll Turing machine extends the ordinary by allowing input and
output tapes to be both infinite. The working tape remains finite.

» Although output tape is infinite, each symbol needs to be written down
after finitely many operations.




Type-ll Computable Functions

> A function f is Type-ll computable, if there exists a Type-Il Turing
machine My, s.t.:

Given any vz of & € dom(f), My outputs a vz of f(&).
o LITTTTTITTTTITTT:
/ —_— I input tapes
v LITT DT TTTITITTT
pav :
“ M — work tapes

LITTTTT T T T output tape

Dl gn) =4

13/33



» ¢” is Type-1l computable over [—1,1]

> Suppose we want to compute e” at some x € [ 1 1] with an error
bound 27" on the output. Since

We only need to expand the series to n + 1 terms, and the error is
controlled by

??“;A

n CL‘k oo 1 1)
D S X ey
k=0 k=n+1

> We then use a 27 ™ rational approximation of x to evaluate the
truncated series, where m < n + 4

> It is computable because the number of terms, n + 1, is computed from the error bound
9 n,

and the truncated series is a computable function in the usual sense over rational
representation of x.



First-order Formulas with Computable Functions

> Let F be any recursive set of Type-ll computable functions.

> This is a very general framework: F can contain polynomials, exp,
sin, and solutions of Lipschitz-continuous ODEs.

» Consider Rr = (R,0,1,F, <) and the corresponding L.

» Can we solve (decide the truth value of) logic formulas in £r over
Rz?

> This would allow us to solve formulas that arise in bounded model
checking of hybrid systems, almost in its full generality.

» The obvious answer is of course NO.

But what if we take into account the numerical computability of F?



Robust Formulas

Suppose we want to decide a formula in Lz:
F'z.(f(z)=0A g(z)=0).
(I C R is a bounded interval where f and g are defined).
» Numerical algorithms can never compute f(z) and g(z) precisely for all z.

> But Type-ll computability implies that it is possible to fix any error bound
0, and numerically decide the relaxed formula:

F'e.(|f(2)|< 5 A lg(x)]< 0)




Consequently, we could consider formulas whose satisfiability is invariant under
numerical perturbations.

> Consider any formula ¢ := A, (V/, fi;(Z) = 0).
> Inequalities are turned into interval bounds on slack variables.

» A §-perturbation on ¢ is a constant vector ¢ satisfying ||¢]|cc < §, and a
S-perturbed ¢ is:

° = /\(\/ | fii (@) = ¢i5)

i




» We say satisfiability of ¢ is §-robust (over some bounded f) if:

For any d-perturbation ¢, Hlf.cp — Hlx.go‘?.

» Observations:

> If robust for bigger d, then robust for smaller ones.

> Strict and non-strict inequalities are inter-changeable in robust
formulas. (But negations can still be encoded.)




Computational Benefits: Decidability

As it turns out, robust formulas in ££ have nice computational properties.

» Theorem:

Satisfiability of robust bounded first-order over R is decidable.

» This is significant given the richness of F: exp, sin, ODEs, ...




Computational Benefits: Complexity

» Theorem:

Suppose all the functions in F are in Type-1l complexity class C, then
satisfiability of bounded SMT in L£ can be decided in NP€,

» Corollaries:

» F ={+, x,exp,sin}: NP-complete.
» F = {Lipschitz-continuous ODEs}: PSPACE-complete.




Delta-Complete Decision Procedures

> Theorem: There exists decision algorithms that, on any ¢ in Lz, returns
“sat/unsat” satisfying:
> If  is decided as “unsat”, then it is indeed unsatisfiable.

> If © is decided as “sat”, then:

Under some J-perturbation ¢, 996 is satisfiable.

> If a decision procedure satisfies this property, we say it is d-complete.




Delta-Complete Bounded Model Checking

Recall that when bounded model checking a hybrid system H, we ask if
P Reach%"(f) A Unsafe(Z)
is satisfiable.

» If ¢ is unsatisfiable, then H is safe up to depth n.

> If ¢ is satisfiable, then H is unsafe.




Delta-Complete BMC

Consequently, using a J-complete decision procedure we can guarantee:
> If ¢ is "unsatisfiable”, then H is safe up to depth n.

> |t is possible to make even stronger claims, that it is safe up to n under any
&’-perturbation, where §’ < § is also specified by the user. In this case we say it is
(8, 8")-complete.

> If v is “satisfiable”, then
‘H is unsafe under some d-perturbation.

Consequently, if a system can become unsafe under some é-perturbation, we
will be able to detect such unsafety.

» This can not be achieved using precise algorithms.

23/33



Practical 6-Complete Decision Procedures

> We have shown a general framework for deciding logic formulas in a rich
theory over reals, and their applicability in verification problems.

> No restriction on use of specific numerical algorithms.

> Interval Constraint Propagation, Semi-definite Programming, Convex
Optimization, CORDIC, Boundary-Value Solvers for ODEs, ...

» The obligation is to prove 6-completeness (rather than using them just as
heuristics).




Interval Constraint Propagation

> Interval Arithmetic + Constraint Programming.

> Starting from initial intervals on all variables, maintain an
over-approximation of the constraints using interval arithmetic. (Use
floating point arithmetic, outward-rounding.)

> Reduce (contraction+splitting) the size of intervals until some limit is
reached (say, 1077). Return “unsat” if conflicts arise in the process
(i.e., intervals on the same variable become disjoint).

Solution
Point

No Solutions
here




ICP in Practice

> Example:
> Solve {z =y, 22 =y} for z € [1,4] and y € [1, 5]:
> 17 [1,4] = [L,VE] — [1, V5] — [1, V5] — [1, VE] — - — [1,1]
> 1Y [1,5] = [1,V5] = [1, V5] — [1, V5] — [1, V5] — - — [1,1]
> Simple algorithm, but can solve large systems of nonlinear constraints.

> Many papers report solving constraints with thousands of variables
(robotics, planning, etc.).

» HySAT and [Gao et al. FMCAD2010] can solve many interesting
benchmarks.

» DPLL(ICP) is o-complete.

26/33



Automatic Transmission Model from Simulink Demos

2l Modaling an Automatic Transmission Contralier

Engine Trashald Calcutaton




The Automatic Transmission Model

» Four main control locations (four gears) plus six transition modes.

Equations in the model Discrete Transitions

Faremisn ot




The Automatic Transmission Model [Absmeier 2001; Runde 1984]

» Equations in the first gear:

Itl(l:) - Tt - RleTs
2 R}
-Itl - It""-[si"_RlIcr""iQIci
R;
Rsr Tt - (It + Isi)wt .
RTi2p = LT ISR Teitoer + (1 —
128 Rci ( Rsi wei ( Rsi ))
» 1-2-1 Shift, Torque Phase:
Ine = T,— RiRyTs—(1— &)Tcg
Ry
RTi25 = 22: (Te2 — }I;:i Wsi — Teiwes)

29/33



The Automatic Transmission Model [Absmeier 2001; Runde 1984]

» Second Gear:

Itzd)t = Tt - RZRde
RTCZup == T;t - Tcl - Itwt
Teitz . Ry
RT2q0wn = er — 5 Ao Ts
2d. R R, Lot + R2Rq
RS’V‘ Isi . .
RT.p = R (Ty — Rsini — (It 4 Iei)wr)
2 R}
It2 = It + Ici + RQICT‘ + 72131
Rl

> Third Gear:
Itgd)t = Tt - R2Rde
RTcoup = Ti—Ter — ltwt
Teita . Rs
RTC own cr T 7Tc Ts
2d R w Ry et + RaRyq

30/33



The Automatic Transmission Model

» 2-3-2 Shift, Torque phase:

. R
Lot = Tit (1= 5°)Tes — RoRaT
1
RTcQup - Tt + Tc3 - Itd)t
. Ry . Ry
RT2d0wn = Rolerwer + Ieiwei + - Isiwsi + R1RqTs + —Te3
R Ry
Rsr Rcr . Isi .
RT125 = R (T + R Tes — (It + Lei)we — Ewsi)
» 2-3-2 Shift, Inertia Phase:
Losin = Tot(1— T EELCY P Wer)
t23Wet — t RS'L‘ c3 Rsr 12B s23Wer
. T 1 .
Teroswer = éjf - (1 - E)TCS — RaTs + Iso3wy
RTc2up - Tt + Tc3 - ItU.Jt
. . Ry . R
RT2d0wn = Rolerwer + Iciwei + Flsiwsi + RoRyTs — RiTCB
1 1

31/33



Results from dReal

> Reachability Question: ¢ < 15 Ata < 50 Aw(t1) > 50 Aw(tz) = 0?7 (Can
the vehicle reach a certain speed and decelerate within a certain time
bound?)

> Answer: Yes, with sample trace returned. (Solved in 4.5s)




Conclusion

> Model checking can be used in the context of nonlinear continuous and
hybrid systems.

» Our technique relies on recent progress in the underlying decision
procedures, combining fast SAT solvers with numerical algorithms.

» We have developed the theory for ensuring the reliablility of such
combination.

> Our tool is under active development and will be available soon.

> We are developing tools for using our solver in the context of program
analysis of embedded code.




