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Cardiac Models as Reaction Diffusion Systems 

Membrane’s AP depends on:  
•  Stimulus (voltage or current): 

–  External / Neighboring cells  

•  Cell’s state  
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AP has nonlinear behavior! 
•  Reaction diffusion system: 

∂u
∂t

= R(u) +∇(D∇u)

Behavior 
In time 

Reaction Diffusion 



Cardiac Models 

•  Minimal Model (Flavio-Cherry) (4 v) Human  
•  Beeler-Reuter (8 v) Canine 
•  Ten Tussher Panfilov (19 v) Human 
•  Iyer (67 v) Human 



Available Technologies 

CPU based GPU based 

The GPU devotes more transistors to data processing  

This image is from CUDA programming guide  



GPU vs CPU 



GPU Architecture 
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Each GPU consists of a  
Set of multiprocessors. 

MULTIPROCESSORS 
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Each Multiprocesssor 
can have 8/32 Stream 
Processors (SP) (called 
by NVIDIA also cores)  
which share access to 
local memory. 

MULTIPROCESSORS 
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MULTIPROCESSORS 
Each Stream Processor 
(core) contains a fused  
multiply-adder capable  
of single precision  
arithmetic. It is capable  
of completing 3 floating  
point operations per  
cycle - a fused MADD  
and a MUL.  



GPU Architecture 
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MULTIPROCESSORS 

Each multiprocessor can 
contain one or more 64-
bit fused multiple adder 
for double precision 
operations. 



Memory Hierarchy 
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The fastest available  
Memory for GPU  
computation is device  
registers. Each  
multiprocessor contains  
16KB of registers.  
The registers are  
partitioned among the 
 MP-resident threads 

MULTIPROCESSORS 

… 
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MULTIPROCESSORS 

… 
Shared memory (16KB) is  
primarily intended  
as a means to provide 
fast communication  
between threads of the 
executed by the same 
multiprocessor, although, 
due to its speed, it can 
also be used as a 
programmer controlled 
memory cache. 



Memory Hierarchy 
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MULTIPROCESSORS 
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GPUs have also DRAM  
The latency is 150x is slower 
then registers and  
shared memory 
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MULTIPROCESSORS 

… 

Constant memory, as the  
name implies, is a  
read-only region which  
also has a small cache. 



Memory Hierarchy 
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Texture memory is read-only  
with a small cache optimized  
for manipulation of textures. 
It also provides built-in linear 
interpolation of the data. 
also provides built-in linear 
interpolation of the data. 



Memory Hierarchy 
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MULTIPROCESSORS 

… 

Global memory is available  
to all threads and is persistent  
between GPU calls. 



CUDA Programming Model 
CPU Host 

Serial Code i 

Serial Code j 

Kernel  
Invocation 

GPU Device 

Block (0,0) Block (0,1) 

Block (1,0) Block (1,1) 

Block (2,0) Block (2,1) 

Block (3,0) Block (3,1) 

Block (4,0) Block (4,1) 

Block (5,0) Block (5,1) 

Grid k 
A[ID]=ID 

Single Instruction Multiple Threads (SIMT) 
                       similar to  
Single Instruction Multiple Data (SIMD) 

THREAD ID 0 THREAD ID 1 THREAD ID 2 THREAD ID 3 

A[ID]=ID A[ID]=ID A[ID]=ID 

if (ID%2) if (ID%2) if (ID%2) if (ID%2) 

A vector 

 A[ID]+=2;  A[ID]+=2;  A[ID]+=2;  A[ID]+=2; 
 A[ID]*=2;  A[ID]*=2;  A[ID]*=2;  A[ID]*=2; 
else else else else 
 A[ID]=0;  A[ID]=0;  A[ID]=0;  A[ID]=0; 
endif endif endif endif 
A[ID]+=2; A[ID]+=2; A[ID]+=2; A[ID]+=2; 

0 1 2 3 2 0 4 0 4 0 8 0 

When branches occur in the code (e.g. due to if statements) the divergent  
threads will become inactive until the conforming threads complete their  
separate execution. 

6 2 10 2 

When execution merges, the threads can 
continue to operate in parallel. 

0 1 2 3 4 0 8 0 



CUDA Programming Model 

Global Memory 

GPU DEVICE 

GRID BLOCK 

THREAD BLOCK 

SHARED MEMORY 

REGISTERS 

The max number of threads 
for a thread block is 512  
and it depends on the 
amount of registers  
that each thread may need. 

Each Thread block is executed  
by a multiprocessors 

Different threads are multiplexed 
and executed by the same core  
in order to reduce the latency of  
memory access. 



Tesla C1060    Fermi C2070 

30 Multiprocessors 
240 Cores 
Processor core clock: 1.296 GHz 
933 Gigaflops (Single precision) 
78 Gigaflops (Double Precision) 
Max Bandwidth(102 Gigabytes/sec) 
4 GB of DRAM 

14 Multiprocessors 
448 Cores 
Processor core clock: 1.15 GHz 
1030 Gigaflops (Single precision) 
515 Gigaflops (Double precision) 
Max Bandwidth (144 GBytes/sec) 
6 GB of DRAM 

Cost: 1000 $ Cost: 3200 $ 



Reaction-Diffusion in CUDA 
∂u
∂t

= R(u) +∇(D∇u) For each time step, a set of (ODEs) and Partial 
Differential Equations (PDEs) must be solved. 

for (timestep=1; timestep < nend; i++){ 
          solveODEs <<grid, block>> (….); 
          calcLaplacian <<grid, block>> (….);         
} 

Solving ODEs using different method  
depending on the model: 

-Runge-Kutta 4th order 
-Forward Euclid  
-Backward Euclid  
-Semi-Implicit 
…… 

Solving PDEs (Calc the Laplacian) 

∇(D∇u)i, j =
Ddt
dx2

ui−1, j + ui, j−1 + ui+1, j + ui, j+1 − 4ui, j( )



Optimize the Reaction Term in CUDA 
Heaviside Simplification 

•  In order to avoid divergent branches among threads we 
substitute if then else condition of Heaviside functions 
in this way: 

Precomputing Lookup Tables using Texture 
•  We build tables where we precompute nonlinear part of 

the ODEs, we bind these table to textures and we 
exploit the built-in linear interpolation feature of the 
texture. 

If (x > a){ 
   y = b; 
}else{ 
   y = c;  
} 

y =b + (x > a)*(b_c) 

a, b, b_c (b-c) are constant 



Optimize the Reaction Term in CUDA 
Kernel splitting: 

•  For complex models, we need to split the ODEs solving 
in many Kernels in order to have enough registers for 
thread to perform our calculation. 

Use –use_fast_math compiler option to substitute  
•  In the models that use log, exp, sqrt, functions we 

substitute them with the GPU built-in functions. 

Using Costant memory for common parameters (dt, dx, ..) 



Optimize the Diffusion Term in CUDA 
Solving PDEs (Calc the Laplacian) 

∇(D∇u)i, j =
Ddt
dx2

ui−1, j + ui, j−1 + ui+1, j + ui, j+1 − 4ui, j( )

Each location is a float 
(4 bytes) The global  
memory latency is  
very slow. The memory is 
accessed in multiples of  
64 bytes  

Using texture we can reduce the latency 
In texture the data is cached (optimize for 2D Locality) 
Drawback: It supports only single precision 



Optimize the Diffusion Term in CUDA 

∇(D∇u)i, j =
Ddt
dx2

ui−1, j + ui, j−1 + ui+1, j + ui, j+1 − 4ui, j( )

Drawback: The number of threads is greater than the number of elements 

Another Technique is using SHARED MEMORY 

THREAD BLOCK 

SHARED MEMORY 

REGISTERS 

Step 1 Step 2 Step 3 

The yellow and red threads read 
the location from the global memory 
into the shared memory. 

The red threads calculates the  
laplacian using the values  
in the shared memory.  

This technique supports single and double precision 

SYNCH 



Case Study 1: Minimal Model (4V) 



Perfomances 

CPU Computation GPU Computation 



Naïve Implementation 

5.4 x 

512x512 2048x2048 

82.92 x 



Reaction optimized  
(Diffusion with Shared Memory) 

520x520 2074x2074 

1.95 x 

27.71 x 



Reaction optimized  
(Diffusion with Texture) 

512x512 

1.7x 

2048x2048 

22.46x 



Beeler-Reuter Model (8V) 



2074x2074 520x520 

Reaction optimized  
(Diffusion with Shared Memory) 

12.87x 

165.46x 



Reaction optimized  
(Diffusion with Texture) 

11.34x 

125.62x 



Ten Tusscher Panfilov Model (19V) 



Reaction optimized  
(Diffusion with Shared Memory) 

520x520 2074x2074 

47x 

815x 



Reaction optimized  
(Diffusion with Texture) 

2048x2048 

36x 

515x 

512x512 



Double vs Single 

After 10 minutes  
of simulation: 

Nai 



Double vs Single 

After 10 minutes  
of simulation: 

Ki 



Double vs Single 
After 10 minutes of simulation: 



Work in Progress Iyer Model (67V) 



Work in Progress 3D Models 



Conclusions 

•  Many other challenge problems of CMACS expedition 
can take advantage of GPU technologies. 

•  The curve of developing of these technologies seems 
very promising for the future years. 

•  We are definitely interesting to collaborate with the 
other teams of the CMACS expedition in order to 
develop new revolutionary highly scalable  GPU-based 
analysis tools for complex systems.  



Thank you 


