
Statistical Model Checking
and Rare Events

Paolo Zuliani

Joint work with Edmund M. Clarke

Computer Science Department, CMU

 Verification of stochastic system models via
statistical model checking

 Temporal logic specification:
 “the amount of p53 exceeds 105 within 20 minutes”

 If Ф = “p53 exceeds 105 within 20 minutes”

Probability (Ф) = ?

Probabilistic Verification

Equivalently

 A biased coin (Bernoulli random variable):

 Prob (Heads) = p Prob (Tails) = 1-p

 p is unknown

 Question: What is p?

 A solution: flip the coin a number of times, collect
the outcomes, and use statistical estimation

Key idea
(Haakan Younes, 2001)

 System behavior w.r.t. property Ф can be modeled
by a Bernoulli random variable of parameter p:

 System satisfies Ф with (unknown) probability p

 Question: What is p?

 Draw a sample of system simulations and use:
 Statistical estimation: returns “p in interval (a,b)” with high

probability

Statistical Model Checking

 Statistical Model Checking is a Monte Carlo method

 Problems arise when p is very small (rare event)

 The number of simulations (coin flips) needed to
estimate p accurately grows too large

 Need to deal with this …

Statistical Model Checking

 Estimate Prob(Xt) = pt, when pt is small (say 10-9)





Rare events

 Estimate Prob(Xt) = pt, when pt is small (say 10-9)

 Standard (Crude) Monte Carlo: generate K i.i.d.
samples of X; return the estimator eK

eK =

 Prob (eK  pt) = 1 for K  (strong law LN)

Rare events

 E[eK] = pt

 Var[eK] =









Rare events

K

pp tt)1(

 E[eK] = pt

 Var[eK] =

 By the Central Limit Theorem (CLT), the distribution of eK

converges to a normal distribution with:

 mean pt

 variance

 Relative Error (RE) =

Rare events

K

pp tt)1(

K

pp tt)1(

Kp

pp

e

e

t

tt

K

K)1(

][E

]var[


 RE =

 Fix K, then RE is unbounded as pt  0

 More accuracy  more samples

 Want confidence interval of relative accuracy δ and
coverage probability c, i.e., estimate eK must satisfy:

Prob(| eK – pt | < δ·pt) ≥ c

 How many samples do we need?

Rare events

Kp

pp

t

tt)1(

 From the CLT, a 99% (approximate) confidence interval
of relative accuracy δ needs about

K ≈ samples

Thus, Prob(| eK – pt | < δpt) ≈ 0.99







Rare events

2

1

t

t

p

p

 From the CLT, a 99% (approximate) confidence interval
of relative accuracy δ needs about

K ≈ samples

Thus, Prob(| eK – pt | < δpt) ≈ 0.99

 Examples:

 pt = 10-9 and δ = 10-2 (ie, 1% relative accuracy) we need
about 1013 samples!!

 Bayesian estimation requires about 6x106 samples with
pt=10-4 and δ = 10-1

Rare events

2

1

t

t

p

p

A solution

 Importance Sampling (1940s)

 A variance-reduction technique

 Can result in dramatic reduction in sample size

 The fundamental Importance Sampling identity

f is the density of X

Importance Sampling

 The fundamental Importance Sampling identity

f is the density of X

Importance Sampling

likelihood ratio

 Estimate pt= E[Xt] = Prob(Xt)

 A sample X1,… XK iid as f

 The crude Monte Carlo estimator is

Importance Sampling

 Estimate pt= E[Xt] = Prob(Xt)

 A sample X1,… XK iid as f

 The crude Monte Carlo estimator is

sampling from f

Importance Sampling

 Define a biasing density f*

 Compute the IS estimator

where is the likelihood ratio

Importance Sampling

)(

)(
)(

* xf

xf
xW 

 Define a biasing density f*

 Compute the IS estimator

where is the likelihood ratio

sampling from f* !

Importance Sampling

)(

)(
)(

* xf

xf
xW 

 Need to choose a “good” biasing density (low variance)

 Optimal density:

 Zero variance! (But …)

Importance Sampling

tp

xftxI
xf

)()(
)(*








K

i

K

i

K
Xf

Xf
tXI

K
XWtXI

K
e

1 *1)(

)(
)(

1
)()(

1








K

i

tt p
XftXI

Xf
tXI

K
p

1)()(

)(
)(

1

 Need to choose a “good” biasing density (low variance)

 Optimal density:

 Zero variance! (But …)

Importance Sampling

tp

xftxI
xf

)()(
)(*








K

i

K

i

K
Xf

Xf
tXI

K
XWtXI

K
e

1 *1)(

)(
)(

1
)()(

1








K

i

tt p
XftXI

Xf
tXI

K
p

1)()(

)(
)(

1

unknown

Cross-Entropy Method
(R. Rubinstein)

 Suppose the density of X in a family of densities {f(· ;v)}

 the “nominal” f is f(x;u)

 Key idea: choose a parameter v such that the distance
between f* and f(· ;v) is minimal

 The Kullback-Leibler divergence (cross-entropy) is a
measure of “distance” between two densities

 First used for rare event simulation by Rubinstein (1997)

Cross-Entropy Method

 The KL divergence (cross-entropy) of densities g, h is

 D(g,h)  0 (= 0 IFF g = h)

 D(g,h) ≠ D(h,g)

 







 dxxhxgdxxgxg

Xh

Xg
EhgD g)(ln)()(ln)(

)(

)(
ln),(

Cross-Entropy Method

 The KL divergence (cross-entropy) of densities g, h is

 D(g,h)  0 (= 0 IFF g = h)

 D(g,h) ≠ D(h,g)

 







 dxxhxgdxxgxg

Xh

Xg
EhgD g)(ln)()(ln)(

)(

)(
ln),(

family {f(· ;v)}

Cross-Entropy Method

 The KL divergence (cross-entropy) of densities g, h is

 D(g,h)  0 (= 0 IFF g = h)

 D(g,h) ≠ D(h,g)

 







 dxxhxgdxxgxg

Xh

Xg
EhgD g)(ln)()(ln)(

)(

)(
ln),(

family {f(· ;v)}

optimal density f*

Cross-Entropy Method

 The KL divergence (cross-entropy) of densities g, h is

 D(g,h)  0 (= 0 IFF g = h)

 D(g,h) ≠ D(h,g)

 







 dxxhxgdxxgxg

Xh

Xg
EhgD g)(ln)()(ln)(

)(

)(
ln),(

family {f(· ;v)}

optimal density f*

min D(f*, f(· ;v))

Cross-Entropy Method

 The Cross-Entropy Method has two basic steps





Cross-Entropy Method

 The Cross-Entropy Method has two basic steps

1. find v* =





)); · (), · ((minarg vffD

v
*

Cross-Entropy Method

 The Cross-Entropy Method has two basic steps

1. find v* =

2. run importance sampling with biasing density f(· ; v*)





)); · (), · ((minarg vffD

v
*

Cross-Entropy Method

 The Cross-Entropy Method has two basic steps

1. find v* =

2. run importance sampling with biasing density f(· ; v*)





)); · (), · ((minarg vffD

v
*

Cross-Entropy Method

 The Cross-Entropy Method has two basic steps

1. find v* =

2. run importance sampling with biasing density f(· ; v*)

 Step 2 is “easy”

 Step 1 is not so easy

)); · (), · ((minarg vffD

v
*

Cross-Entropy Method

 Step 1:

v* =

Cross-Entropy Method

 Step 1:

v* =  







dxvxfxfdxxfxf

vvXf

Xf
E

v
f);(ln)()(ln)(minarg

);(

)(
lnminarg ***

*

*

Cross-Entropy Method

 Step 1:

v* =  







dxvxfxfdxxfxf

vvXf

Xf
E

v
f);(ln)()(ln)(minarg

);(

)(
lnminarg ***

*

*

always  0

Cross-Entropy Method

 Step 1:

v* =  







dxvxfxfdxxfxf

vvXf

Xf
E

v
f);(ln)()(ln)(minarg

);(

)(
lnminarg ***

*

*

always  0

 dxvxfxf

v

);(ln)(maxarg *

Cross-Entropy Method

 Step 1:

v* =  







dxvxfxfdxxfxf

vvXf

Xf
E

v
f);(ln)()(ln)(minarg

);(

)(
lnminarg ***

*

*

always  0

 dxvxfxf

v

);(ln)(maxarg * 


 dxvxf
p

uxftxI

v t

);(ln
);()(

maxarg

Cross-Entropy Method

 Step 1:

v* =  







dxvxfxfdxxfxf

vvXf

Xf
E

v
f);(ln)()(ln)(minarg

);(

)(
lnminarg ***

*

*

always  0

 dxvxfxf

v

);(ln)(maxarg * 


 dxvxf
p

uxftxI

v t

);(ln
);()(

maxarg

  dxvxfuxftxI

v

);(ln);()(maxarg

Cross-Entropy Method

 Step 1:

v* =  







dxvxfxfdxxfxf

vvXf

Xf
E

v
f);(ln)()(ln)(minarg

);(

)(
lnminarg ***

*

*

always  0

 dxvxfxf

v

);(ln)(maxarg * 


 dxvxf
p

uxftxI

v t

);(ln
);()(

maxarg

  dxvxfuxftxI

v

);(ln);()(maxarg)];(ln)([maxarg vXftXIE

v
u 

Cross-Entropy Method

 For certain families {f(· ;v)} (eg, one-dim exponential)
the problem

can be solved analytically:

)];(ln)([maxarg* vXftXIE

v

v u 

)]([

])([
*

tXIE

XtXIE
v

u

u






Cross-Entropy Method

 For certain families {f(· ;v)} (eg, one-dim exponential)
the problem

can be solved analytically:

)];(ln)([maxarg* vXftXIE

v

v u 

)]([

])([
*

tXIE

XtXIE
v

u

u






Cross-Entropy Method

 In practice: get X1, …, XK samples iid as f(· ;u) and
compute the approximation














K

i

i

K

i

ii

tXI

XtXI

v

1

1
*

)]([

])([

Cross-Entropy Method

 In practice: get X1, …, XK samples iid as f(· ;u) and
compute the approximation














K

i

i

K

i

ii

tXI

XtXI

v

1

1
*

)]([

])([

In general, one would have to (numerically) solve the problem





K

i

ii vXftXI
K 1

0);(ln)(
1

Cross-Entropy Method

 Problem: If {X  t} is a rare event, then this fails
















K

i

i

K

i

ii

tXI

XtXI

v

1

1

)]([

])([

*

Cross-Entropy Method

 Problem: If {X  t} is a rare event, then this fails

 Most terms in both sums will be zero!














K

i

i

K

i

ii

tXI

XtXI

v

1

1

)]([

])([

*

Cross-Entropy with Rare Events

 Rubinstein gave an algorithm that computes v* adaptively

 Estimate Prob {S(X)  t} [S(X) = sample performance]









Cross-Entropy with Rare Events

 Rubinstein gave an algorithm that computes v* adaptively

 Estimate Prob {S(X)  t} [S(X) = sample performance]

 Idea: compute v* for a non-rare event {S(X)  t’}, and
iterate until t’ converges to t







Cross-Entropy with Rare Events

 Rubinstein gave an algorithm that computes v* adaptively

 Estimate Prob {S(X)  t} [S(X) = sample performance]

 Idea: compute v* for a non-rare event {S(X)  t’}, and
iterate until t’ converges to t

 Fix, say 0.01 < ρ < 0.1; get X1, … XK samples iid as f(· ;u)





Cross-Entropy with Rare Events

 Rubinstein gave an algorithm that computes v* adaptively

 Estimate Prob {S(X)  t} [S(X) = sample performance]

 Idea: compute v* for a non-rare event {S(X)  t’}, and
iterate until t’ converges to t

 Fix, say 0.01 < ρ < 0.1; get X1, … XK samples iid as f(· ;u)

 Compute t’ = (1-ρ) sample quantile of the S(Xj)

then Prob {S(X)  t’}  ρ (approx.)



Cross-Entropy with Rare Events

 Rubinstein gave an algorithm that computes v* adaptively

 Estimate Prob {S(X)  t} [S(X) = sample performance]

 Idea: compute v* for a non-rare event {S(X)  t’}, and
iterate until t’ converges to t

 Fix, say 0.01 < ρ < 0.1; get X1, … XK samples iid as f(· ;u)

 Compute t’ = (1-ρ) sample quantile of the S(Xj)

then Prob {S(X)  t’}  ρ (approx.)

 Now compute v* “as usual”. Iterate until t’=t

Cross-Entropy with Rare Events

 Does NOT work with statistical model checking

 Problem: sample quantile computation

 Order the sample performances

S(1)  …  S(i)  …  S(K)

 In statistical model checking, sample performances are
either 0 (property false) or 1 (property true)

(1 - ρ)K

)],;()([

]),;()([

)]([

])([
*

wuXWtXIE

XwuXWtXIE

tXIE

XtXIE
v

w

w

u

u











Cross-Entropy with Rare Events

 However …

where for an arbitrary parameter w

Work in progress

);(

);(
),;(

wxf

uxf
wuxW 

Example: Fuel Control System

The Stateflow/Simulink model

Verification

 We want to estimate the probability that

M, FaultRate ╞═ F100 G1(FuelFlowRate = 0)

 “It is the case that within 100 seconds, FuelFlowRate is
zero for 1 second”

 FaultRate = 1/3600s (same value for the three sensors)

Importance Sampling

 Ran cross-entropy method to estimate optimal
biasing density with FaultRates = {1/7, 1/8, 1/9}

 Used 100 samples for this, and obtained

 NewRates* = {1/2.007, 1/1.0113, 1/1.7277}

 Run importance sampling with 1,000 samples
and NewRates*

 Probability estimate 9.1855x10-15

Conclusions

 Need to be able to deal with rare events in statistical
model checking

 The Cross-Entropy method is an interesting, semi-
automatic technique

 Research: adaptive technique for stat. model checking

 [Further benefit: cross-entropy method also applies to
optimization, eg, finding policies for MDPs]

The End

Questions?

