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Probabilistic Verification

" Verification of stochastic system models via
statistical model checking

" Temporal logic specification:

» “the amount of p53 exceeds 10° within 20 minutes”

" |If @ = “p53 exceeds 10° within 20 minutes”
Probability (®) = ?




Equivalently

= A biased coin (Bernoulli random variable):
" Prob (Heads) =p Prob (Tails) = 1-p

" pis unknown

= Question: What is p?

= A solution: flip the coin a number of times, collect
the outcomes, and use statistical estimation



Statistical Model Checking

Key idea
(Haakan Younes, 2001)

= System behavior w.r.t. property @ can be modeled
by a Bernoulli random variable of parameter p:

= System satisfies @ with (unknown) probability p
" Question: What is p?

" Draw a sample of system simulations and use:

= Statistical estimation: returns “p in interval (a,b)” with high
probability



Statistical Model Checking

Statistical Model Checking is a Monte Carlo method
Problems arise when p is very small (rare event)

The number of simulations (coin flips) needed to
estimate p accurately grows too large

Need to deal with this ...



Rare events

= Estimate Prob(X=t) = p,, when p, is small (say 10)




Rare events

= Estimate Prob(X=t) = p,, when p, is small (say 10~)

» Standard (Crude) Monte Carlo: generate K'i.i.d.
samples of X; return the estimator e,

 k

k=K ZI ’ K

" Prob (e, — p,) =1 for K— o (strong law LN)



Rare events

" E[e/(] = P;
pt (1_ pt)

= Varle,] =



Rare events

E[e/(] = P;
pt (1_ pt)
K

By the Central Limit Theorem (CLT), the distribution of e,
converges to a normal distribution with:

Varle,] =

" mean p,

pt (1_ pt)
K

® yariance

Jvate] /p.a-p)
Efe, ] pVK

Relative Error (RE) =




= R

Rare events

E =\/ pt (1_ pt)
p VK

Fix K, then RE is unbounded as p, > 0

More accuracy — more samples

Want confidence interval of relative accuracy 6 and
coverage probability ¢, i.e., estimate e, must satisfy:

Prob(| e,—p, | <6'p,) 2 ¢

How many samples do we need?



Rare events

" From the CLT, a 99% (approximate) confidence interval
of relative accuracy 6 needs about

1o pzt samples
p.o

Thus, Prob(| e,—p, | <bp,) = 0.99

K



Rare events

" From the CLT, a 99% (approximate) confidence interval
of relative accuracy 6 needs about

~ 1- pt
p.5°

Thus, Prob(| e,—p, | <bp,) = 0.99

K

samples

= Examples:

* p,=10°and 6 =10 (ie, 1% relative accuracy) we need
about 10%3 samples!!

= Bayesian estimation requires about 6x10° samples with
p,=10%*and 6 = 101



A solution

" Importance Sampling (1940s)
= A variance-reduction technique

" Can result in dramatic reduction in sample size



Importance Sampling

" The fundamental Importance Sampling identity
pt = E[I(X >1)]

— /I(:r > t)f(x) dx

— [ 1> 042 p @) da

— /I(:r > )W (x) fe(x) dx

= FE. [ I(X > t)W(X)]
fis the density of X



Importance Sampling

" The fundamental Importance Sampling identity
pt = E[I(X >1)]

— E* [I(X Z t)I’;V(X)] likelihood ratio
fis the density of X



Importance Sampling
» Estimate p,= E[X=t] = Prob(X>t)
= Asample X,,... X, iid as f

® The crude Monte Carlo estimator is

1 & k
==y I(Xiz>t)=—. X~
Pt 7% L ( ) I’ o~ f



Importance Sampling
» Estimate p,= E[X=t] = Prob(X>t)
= Asample X,,... X, iid as f

® The crude Monte Carlo estimator is

| K ke
po= g lXiz0=F X~ f]

K /

sampling from f




Importance Sampling

* Define a biasing density f.

= Compute the IS estimator

K
SR ,,

f (x)

*

where W(x) = is the likelihood ratio




Importance Sampling

* Define a biasing density f.

= Compute the IS estimator

K
b= I > OW(X). (K2

|

sampling from f. |
f(x)

where W(x) =

is the likelihood ratio



Importance Sampling

" Need to choose a “good” biasing density (low variance)

= Optimal density:  f.(X) = (X 2;)f(x)
e :iZK:I(X Zt)W(X):iil(X 2,[) f(X)
K =1 K3 f.(X)
o 1S f(X)
= p, KZ*I(X > t) X000 0.

= Zero variance! (But ...



Importance Sampling

" Need to choose a “good” biasing density (low variance)

| | 1 (x>1) f (X)
= O | d : f* =
ptimal density (X) @ unknown
13 LS ey
= gl(x > W (X) = K;'(X D)
) i K f(X) B
=, K;'(X AT I

= Zero variance! (But ...



Cross-Entropy Method
(R. Rubinstein)

Suppose the density of X in a family of densities {f( - ;v)}

" the “nominal” f is f(x;u)

Key idea: choose a parameter v such that the distance
between f. and f( - ;v) is minimal

The Kullback-Leibler divergence (cross-entropy) is a
measure of “distance” between two densities

First used for rare event simulation by Rubinstein (1997)



Cross-Entropy Method

" The KL divergence (cross-entropy) of densities g, h is

D(g,h) = Eg{ln ﬁ&ﬂ =J.g(x) In g(x)dx—jg(x) In h(x)dx

" D(g,h)=0 (=0 IFF g=h)
= D(g,h) # D(h,g)
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Cross-Entropy Method

" The KL divergence (cross-entropy) of densities g, h is

D(g,h) = Eg{ln ﬁ&ﬂ =J.g(x) In g(x)dx—jg(x) In h(x)dx

" D(g,h)=0 (=0 IFF g=h)
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Cross-Entropy Method

" The KL divergence (cross-entropy) of densities g, h is

D(g,h) = Eg{ln ﬁ&ﬂ = j g(x)In g(x)dx—jg(x) In h(x)dx

" D(g,h)=0 (=0 IFF g=h)
= D(g,h) # D(h,g)

min D(f., f{ - ;v))
\ 1

optimal density f.




Cross-Entropy Method

" The Cross-Entropy Method has two basic steps



Cross-Entropy Method

" The Cross-Entropy Method has two basic steps

1. find v. = argmin D(L.(+), T(+;V))
V



Cross-Entropy Method

" The Cross-Entropy Method has two basic steps

1. find v. = argmin D(L.(+), T(+;V))
V

2. runimportance sampling with biasing density f( - ; v.)



Cross-Entropy Method

" The Cross-Entropy Method has two basic steps
1. find (v,)= argmin D(L.(:), F(-;v))
Vv

2. runimportance sampling with biasing density f{( - @



Cross-Entropy Method

" The Cross-Entropy Method has two basic steps
1. find (v,)= agmin D(L.(:), F(-;v))

V
2. run importance sampling with biasing density f( - @

=  Step 2is “easy”

= Step 1is not so easy



Cross-Entropy Method

= Step 1:



Cross-Entropy Method

= Step 1:

Vi = arg\inin E{m ff(;xz)} = arg\:ninj f.(x)In f.(x)dx —j f.(x)In f(x;v)dx



Cross-Entropy Method

= Step 1:

always =0

\

Vi = arg\tnin E{In ff(;x\z)} = arg\:ninf[ f.(x)In f.(x)dx —j f.(x)In f (x;v)dx\



Cross-Entropy Method

" Step 1: always =0
\
Vi = arg\tnin E{In ff(;x\z)} = arg\:nin(j f.(x)In f.(x)dx —j f.(x)In f (x;v)dx\

= arg max j f.(x)In f(x;v)dx
Vv



Cross-Entropy Method

" Step 1: always =0
\
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Cross-Entropy Method

" Step 1: always =0
\
Vi = arg\;nin E{In ff(;x\z)} = arg\:nin(j f.(x)In f.(x)dx —j f.(x)In f (x;v)dx\

=arg maxj f.(x)In f(x;v)dx = arg max_[ (x> t;f (xu) In f(X;v)dx
Vv V t

=arg maxj 1(x>1) f (x;u)In f (x;v)dx
V



Cross-Entropy Method

" Step 1: always =0
\
Vi = arg\;nin E{In ff(;x\z)} = arg\:nin(j f.(x)In f.(x)dx —j f.(x)In f (x;v)dx\

= arg maxj f.(x)In f(x;v)dx = arg max_[ (x> t;f (xu) In f(X;v)dx
Vv V t

=arg male(xzt)f(x;u)ln f (x;v)dx =argmax E,[1(X >t)In f(X;V)]
V Vv



Cross-Entropy Method

= For certain families {f( - ;v)} (eg, one-dim exponential)
the problem

V.=argmax E [I (X >t)In f(X;V)]
Y
can be solved analytically:

_E[I(X =1)X]
OB [(X 21)]




Cross-Entropy Method

= For certain families {f( - ;v)} (eg, one-dim exponential)
the problem

V.=argmax E [I (X >t)In f(X;V)]
Vv

can be solved analytically:

E,[1(X 2t)X]



Cross-Entropy Method

" |n practice: get X,, ..., X, samples iid as f( - ;u) and
compute the approximation

K

[1(X; 21) X]

V+x = S

Z[I(xi > 1)]




Cross-Entropy Method

" |n practice: get X,, ..., X, samples iid as f( - ;u) and
compute the approximation

YK 2 X,]

V+x = S

Z[I(xi > 1)]

In general, one would have to (numerically) solve the problem

%il(xi >t)VIn f(X;;v) =0




Cross-Entropy Method

= Problem: If {X = t}is a rare event, then this fails

K

D IH(X > 1)X]

v = =l

Z[I(xi > )]




Cross-Entropy Method

= Problem: If {X = t}is a rare event, then this fails

K

DX 21)X]

v = =l

Z[I(xi > )]

= Most terms in both sums will be zero!



Cross-Entropy with Rare Events

= Rubinstein gave an algorithm that computes v. adaptively

" Estimate Prob {S(X) =t} [S(X)=sample performance]



Cross-Entropy with Rare Events
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iterate until t” converges to t



Cross-Entropy with Rare Events

Rubinstein gave an algorithm that computes v. adaptively
Estimate Prob {S(X) =t} [S(X) = sample performance]

Idea: compute v. for a non-rare event {S(X) = t’}, and
iterate until t" converges to t

Fix, say 0.01 < p < 0.1; get X, ... X, samples iid as f( - ;u)
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then Prob {S(X)=t'}=p (approx.)



Cross-Entropy with Rare Events

Rubinstein gave an algorithm that computes v. adaptively
Estimate Prob {S(X) =t} [S(X) = sample performance]

Idea: compute v. for a non-rare event {S(X) = t’}, and
iterate until t" converges to t

Fix, say 0.01 < p < 0.1; get X, ... X, samples iid as f( - ;u)
Compute t’ = (1-p) sample quantile of the S(X))
then Prob {S(X)=t'}=p (approx.)

|II

Now compute v. “as usual”. Iterate until t'=t



Cross-Entropy with Rare Events

Does NOT work with statistical model checking
Problem: sample quantile computation
Order the sample performances

S(l) < see < S(I) < see < S(K)

|

(1-p)K

In statistical model checking, sample performances are
either O (property false) or 1 (property true)



Cross-Entropy with Rare Events

= However ...

CENN(X=20X]_ E[H(X =W (X;u,w)X]

E[I(X>t)]  E,J[I(X>t)W(X:uw)]

f(x;u)

for an arbitrary parameter w
f(X;w)

where W (X; U, w) =

Work in progress




Example: Fuel Control System

The Stateflow/Simulink model

Hominal
Spead
200

Foo
High
Spead

ThrottleCommand

M

f Throttle_Sen=ar

F_Q\-C T Throttle

Faulty Speed Sensor

Speed_Selector

e throttle

= Il ;
Ot 1 Engine Speed P 2nigine spesd
If’ Inz
fuel rat
Faulty HEl e
E&0 Sensar
In1 EGO
Out1 ——— | EGO
In2
Faulty
MAF Sensar
Ini P
Ot ——————J{ hl&sP
In2

—

T FuelFlowRate

e fuicl

engine speadol_out

throttle angle

AirFuelRatio ?

h®p

Engineasbynamics

[ ]

AirFuel Ratio
————————

4

FuelFlowRate

FlotResults

FuelRateController




Verification

" We want to estimate the probability that

M, FaultRate = F19 G!(FuelFlowRate = 0)

= “It js the case that within 100 seconds, FuelFlowRate is
zero for 1 second”

» FaultRate = 1/3600s (same value for the three sensors)



Importance Sampling

" Ran cross-entropy method to estimate optimal
biasing density with FaultRates = {1/7, 1/8, 1/9}

" Used 100 samples for this, and obtained
= NewRates. ={1/2.007, 1/1.0113, 1/1.7277}

" Run importance sampling with 1,000 samples
and NewRates.

= Probability estimate 9.1855x101°



Conclusions

Need to be able to deal with rare events in statistical
model checking

The Cross-Entropy method is an interesting, semi-
automatic technique

Research: adaptive technique for stat. model checking

[Further benefit: cross-entropy method also applies to
optimization, eg, finding policies for MDPs]



The End

Questions?



