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 Verification of stochastic system models via
statistical model checking

 Temporal logic specification:
 “the amount of p53 exceeds 105 within 20 minutes”

 If Ф = “p53 exceeds 105 within 20 minutes”

Probability (Ф) = ?

Probabilistic Verification



Equivalently

 A biased coin (Bernoulli random variable):

 Prob (Heads) = p Prob (Tails) = 1-p

 p is unknown

 Question: What is p?

 A solution: flip the coin a number of times, collect 
the outcomes, and use statistical estimation



Key idea
(Haakan Younes, 2001)

 System behavior w.r.t. property Ф can be modeled 
by a Bernoulli random variable of parameter p:

 System satisfies Ф with (unknown) probability p

 Question: What is p?

 Draw a sample of system simulations and use:
 Statistical estimation: returns “p in interval (a,b)” with high 

probability

Statistical Model Checking



 Statistical Model Checking is a Monte Carlo method

 Problems arise when p is very small (rare event)

 The number of simulations (coin flips) needed to 
estimate p accurately grows too large 

 Need to deal with this …

Statistical Model Checking



 Estimate Prob(Xt) = pt, when pt is small (say 10-9)
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 Estimate Prob(Xt) = pt, when pt is small (say 10-9)

 Standard (Crude) Monte Carlo: generate K i.i.d. 
samples of X; return the estimator eK

eK =

 Prob (eK  pt) = 1  for K  (strong law LN)

Rare events



 E[eK] = pt

 Var[eK] =  
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 E[eK] = pt

 Var[eK] =  

 By the Central Limit Theorem (CLT), the distribution of eK 

converges to a normal distribution with:

 mean  pt

 variance 

 Relative Error (RE) = 
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 RE =

 Fix K, then RE is unbounded as pt  0

 More accuracy  more samples

 Want confidence interval of relative accuracy δ and 
coverage probability c, i.e., estimate eK must satisfy:

Prob(| eK – pt | < δ·pt) ≥ c

 How many samples do we need?
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 From the CLT, a 99% (approximate) confidence interval 
of relative accuracy δ needs about

K ≈             samples

Thus, Prob(| eK – pt | < δpt) ≈ 0.99
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 From the CLT, a 99% (approximate) confidence interval 
of relative accuracy δ needs about

K ≈             samples

Thus, Prob(| eK – pt | < δpt) ≈ 0.99

 Examples: 

 pt = 10-9 and δ = 10-2 (ie, 1% relative accuracy) we need 
about 1013 samples!!

 Bayesian estimation requires about 6x106 samples with 
pt=10-4 and δ = 10-1
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A solution

 Importance Sampling (1940s)

 A variance-reduction technique

 Can result in dramatic reduction in sample size



 The fundamental Importance Sampling identity

f is the density of X

Importance Sampling



 The fundamental Importance Sampling identity

f is the density of X

Importance Sampling

likelihood ratio



 Estimate  pt= E[Xt] = Prob(Xt)

 A sample X1,… XK iid as f

 The crude Monte Carlo estimator is

Importance Sampling



 Estimate  pt= E[Xt] = Prob(Xt)

 A sample X1,… XK iid as f

 The crude Monte Carlo estimator is

sampling from f

Importance Sampling



 Define a biasing density f*

 Compute the IS estimator

where                       is the likelihood ratio

Importance Sampling
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 Define a biasing density f*

 Compute the IS estimator

where                       is the likelihood ratio

sampling from f* !

Importance Sampling

)(

)(
)(

* xf

xf
xW 



 Need to choose a “good” biasing density (low variance)

 Optimal density: 

 Zero variance! (But …)

Importance Sampling
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 Need to choose a “good” biasing density (low variance)

 Optimal density: 

 Zero variance! (But …)

Importance Sampling
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Cross-Entropy Method
(R. Rubinstein)

 Suppose the density of X in a family of densities {f( · ;v)}

 the “nominal” f is f(x;u)

 Key idea: choose a parameter v such that the distance
between f* and f( · ;v) is minimal

 The Kullback-Leibler divergence (cross-entropy) is a 
measure of “distance” between two densities

 First used for rare event simulation by Rubinstein (1997)



Cross-Entropy Method

 The KL divergence (cross-entropy) of densities g, h is

 D(g,h)  0 (= 0     IFF   g = h)

 D(g,h) ≠ D(h,g)
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Cross-Entropy Method

 The KL divergence (cross-entropy) of densities g, h is

 D(g,h)  0 (= 0     IFF   g = h)

 D(g,h) ≠ D(h,g)

 

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
 dxxhxgdxxgxg

Xh
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family {f( · ;v)}

optimal density f*

min D(f*, f( · ;v))



Cross-Entropy Method 

 The Cross-Entropy Method has two basic steps
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Cross-Entropy Method 

 The Cross-Entropy Method has two basic steps

1. find    v* =

2. run importance sampling with biasing density f( · ; v*)
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 The Cross-Entropy Method has two basic steps

1. find    v* =
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Cross-Entropy Method 

 The Cross-Entropy Method has two basic steps

1. find    v* =

2. run importance sampling with biasing density f( · ; v*)

 Step 2 is “easy”

 Step 1 is not so easy
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Cross-Entropy Method 

 Step 1: 

v* =



Cross-Entropy Method 

 Step 1: 
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Cross-Entropy Method 
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Cross-Entropy Method 

 For certain families {f( · ;v)}  (eg, one-dim exponential) 
the problem

can be solved analytically:
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Cross-Entropy Method 

 For certain families {f( · ;v)}  (eg, one-dim exponential) 
the problem

can be solved analytically:
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Cross-Entropy Method 

 In practice:  get X1, …, XK samples iid as f( · ;u) and 
compute the approximation
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Cross-Entropy Method 

 In practice:  get X1, …, XK samples iid as f( · ;u) and 
compute the approximation
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Cross-Entropy Method 

 Problem:  If {X  t} is a rare event, then this fails
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Cross-Entropy Method 

 Problem:  If {X  t} is a rare event, then this fails

 Most terms in both sums will be zero!
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Cross-Entropy with Rare Events

 Rubinstein gave an algorithm that computes v* adaptively

 Estimate Prob {S(X)  t}     [S(X) = sample performance]
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iterate until t’ converges to t
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Cross-Entropy with Rare Events
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 Compute  t’ = (1-ρ) sample quantile of the S(Xj)

then Prob {S(X)  t’}  ρ (approx.)
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Cross-Entropy with Rare Events

 Rubinstein gave an algorithm that computes v* adaptively

 Estimate Prob {S(X)  t}     [S(X) = sample performance]

 Idea: compute v* for a non-rare event {S(X)  t’}, and 
iterate until t’ converges to t

 Fix, say 0.01 < ρ < 0.1; get X1, … XK samples iid as f( · ;u) 

 Compute  t’ = (1-ρ) sample quantile of the S(Xj)

then Prob {S(X)  t’}  ρ (approx.)

 Now compute v* “as usual”. Iterate until t’=t



Cross-Entropy with Rare Events

 Does NOT work with statistical model checking

 Problem: sample quantile computation

 Order the sample performances

S(1)  …  S(i)  …  S(K)

 In statistical model checking, sample performances are 
either 0 (property false) or 1 (property true)

(1 - ρ)K
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 However …

where for an arbitrary parameter w

Work in progress

);(

);(
),;(

wxf

uxf
wuxW 



Example: Fuel Control System

The Stateflow/Simulink model



Verification

 We want to estimate the probability that 

M, FaultRate ╞═ F100 G1(FuelFlowRate = 0)

 “It is the case that within 100 seconds, FuelFlowRate is 
zero for 1 second”

 FaultRate = 1/3600s  (same value for the three sensors)



Importance Sampling

 Ran cross-entropy method to estimate optimal 
biasing density with FaultRates = {1/7, 1/8, 1/9}

 Used 100 samples for this, and obtained

 NewRates* = {1/2.007, 1/1.0113, 1/1.7277}

 Run importance sampling with 1,000 samples 
and NewRates*

 Probability estimate  9.1855x10-15



Conclusions

 Need to be able to deal with rare events in statistical 
model checking

 The Cross-Entropy method is an interesting, semi-
automatic technique

 Research: adaptive technique for stat. model checking

 [Further benefit: cross-entropy method also applies to 
optimization, eg, finding policies for MDPs]



The End

Questions?


