JPL

NASA/JPL Laboratory
for Reliable Software

A Scala API for Runtime Verification

Klaus Havelund
Jet Propulsion Laboratory
Pasadena, California

JPL

NASA/JPL Laboratory
for Reliable Software

A Scala API for Runtime Verification
DSL

Klaus Havelund
Jet Propulsion Laboratory
Pasadena, California

JPL

NASA/JPL Laboratory
for Reliable Software

understanding complex systems

by analyzing their execution

A Scala API for Runtime Verification
DSL

Klaus Havelund
Jet Propulsion Laboratory

Pasadena, California

log analysis

U

(

event K

(

event \>

(

fault protection

response

JPL

a DSL for log analysis

NeJ-8l Scope

{::%

COMMAND (" STOP_CAMERA",1,22:50.00)

COMMAND ("ORIENT_ANTENNA_ TOWARDS_GROUND", 2,22:50.10)
SUCCESS ("ORIENT_ANTENNA_TOWARDS_GROUND", 3, 22:5Z2.02)
COMMAND (" STOP_CAMERA", 4, 22:55.01)

SUCCESS ("ORIENT_ ANTENNA_TOWARDS GROUND",5,22:56.19)
COMMAND (" STOP_ALL",6,23:01.10)

FAIL("ORIENT ANTENNA_TOWARDS_GROUND",7,23:02.02)

a LogScope property

CommandMustSucceed:

“An issued command must succeed, without a failure to
occur before then”.

monitor CommandMustSucceed {
always {
COMMAND(n,x) => RequireSuccess(n,x)
}

hot RequireSuccess(name,number) {
FAIL(name,number) => error
SUCCESS(name,number) => ok

}

rule_schema ::=
modifier+ "{" transition+ "}"

| modifier* ident ["(" ident,* ")"] ["{" transition+ "}"]
modifier ::=
m init" | Tlalways L1 | mn EtEp" | "HE}Ct n | ITthIT
transition ::= pattern,* "=>" pattern,*
pattern ::= ["!"] ident ["(" constraint,* ")"]
constraint =
ident ":" range

| range

user reaction

excellent

| read the manual and was
up an running, all before
lunch

my first spec had no errors
and just worked

but (2 days later)

e can | define a function and
call it in a formula?

* jisit possible to re-use
formulas?

external versus internal DSL

bst | LogScope

parser
v ps. | TraceContract
combines
programming programming parameterl-zed
language language state machines
and temporal
logic.

external DSL internal DSL

pros and cons for internal DSL

pros cons
* decreases development e steep learning curve
effort

* limited analyzability
* Increases expressiveness

* allows use of existing IDE,
debuggers, etc.

About Scala Documentation Code Examples Software Scala Developers

'"tmd“"““ In the Enterprise
/‘ e Discover how Scala is used to
“ln thie Entaroiine create cpmmermal sys'Fems 0)
' companies such as Twitter,

m Research Siemens, and others.

Communlty
‘ z

Compnler Read more...

Introducing Scala

Scala is a general purpose programming language designed to express common programming pattems in a
concise, elegant, and type-safe way. It smoothly integrates features of object-oriented and functional languages,
enabling Java and other programmers to be more productive. Code sizes are typically reduced by a factor of two to
three when compared to an equivalent Java application. Read more

Scala 2.9.0 RC2

Created by admin on 2011-04-26. Updated: 2011-04-26, 15:35

The second release candidate of the new Scala 2.9 distribution is now available: Scala 2.9.0 RC2 is currently
available from our Download Page. The Scala 2.9.0 codebase includes several additions, notably the new Parallel
Collections, but it also introduces improvements on many existing features, and contains many bug fixes.

Please help us with the testing of this release candidate, and let us know of any issues you may detect.

Login or register to post comments Read more

The Scala IDE for Eclipse beta 2 available now!
Created by dragos on 2011-04-15. Updated: 2011-04-15, 11:16

Scala Quick Links

o Download Scala

o Reference Manuals
o Scala API

o Report a Bug

o Submit a Story

o News Archive

o FAQs

o Site map

o Contact Us

o The Scala Shop

o Scala Days 2011

o Summer of Code 2011

Featured News

o Akka 1.0 Released
o Scala 2.8.1 final

User login

Username: *

Password: *

will be sent securely

Create new account
Retrieve lost password

Scala as a unifier

script-like

|

object oriented - ’Scala <€ functional

|

high performance
with strong typing

events

abstract class Event

case class COMMAND(name: String, nr: Int) extends Event
case class SUCCESS(name: String, nr: Int) extends Event
case class FAIL(name: String, nr: Int) extends Event

U

event
event

event

:

val trace : List[Event] =
List(
COMMAND("STOP_DRIVING", 1),
COMMAND("TAKE_PICTURE", 2),

SUCCESS("TAKE_PICTURE", 2),
SUCCESS("TAKE_PICTURE", 2)

)

monitor CommandMustSucceed {
iways LogScope
COMMAND(n,x) => RequireSuccess(n,x)

}

hot RequireSuccess(name,number) {
FAIL(hame,number) => error
SUCCESS(name,number) => ok

}

}

class CommandMustSucceed extends Monitor[Event] {
always {
case COMMAND(n,x) => RequireSuccess(n,x)
} /
def RequireSuccess(name: String, number: Int) =
hot {

case FAIL('name’, 'number’) => error
case SUCCESS('name’, ‘number’) => ok

}

TraceContract |,

monitor CommandMustSucceed {
always {

COMMAND(n,x) => RequireSuccess(n,x)

}

hot RequireSuccess(name,number) {

FAIL(hame,number) => error
SUCCESS(name,number) => ok

}
}

LogScope

TraceContract

inlining a state

class CommandMustSucceed extends Monitor[Event] {
always {
case COMMAND(n, x) =>
hot {
case FAIL('n’, 'x’) => error
case SUCCESS('n’, 'x’) => ok
}

monitor CommandMustSucceed {
always {

COMMAND(n,x) => RequireSuccess(n,x)

}

hot RequireSuccess(name,number) {

FAIL(hame,number) => error
SUCCESS(name,number) => ok

}
}

LogScope

TraceContract

linear temporal logic

class CommandMustSucceed extends Monitor[Event] {
always {
case COMMAND(n, x) =>
not(FAIL(n, x)) until (SUCCESS(n, x))

monitor CommandMustSucceed {
always {

COMMAND(n,x) => RequireSuccess(n,x)

}

hot RequireSuccess(name,number) {

FAIL(hame,number) => error
SUCCESS(name,number) => ok

}
}

LogScope

TraceContract

first 10 commands must succeed

class CommandMustSucceed extends Monitor[Event] {
var count=0
always {
case COMMAND(n, x) if count < 10 =>
count+=1
not(FAIL(n, x)) until (SUCCESS(n, x))

class Monitor[Event] {
type Block = PartialFunction[Event, Formula] (*\label{type-block}*)

// states:

def always(block: Block): Formula
def state(block: Block): Formula
def hot(block: Block): Formula
def step(block: Block): Formula
def strong(block: Block): Formula
def weak(block: Block): Formula

// future time temporal logic:

def not(formula: Formula): Formula

def globally(formula: Formula): Formula

def eventually(formula: Formula): Formula

def strongnext(formula: Formula): Formula

def matches(predicate: PartialFunction[Event, Boolean]): Formula
def within(time: Int)(formula: Formula): Formula

the state function

CommandMustSucceed:

“An issued command can succeed at most once”,

class MaxOneSuccess extends Monitor[Event] {

always {
case SUCCESS(_, number) =>
state {
case SUCCESS(_, 'number’) => error
}
}

}

analyzing a trace

class Requirements extends Monitor[Event] { compose
monitor(
new CommandMustSucceed,
new MaxOneSuccess

run

object Apply {
def readlLog(): List[Event] ={...}

def main(args: Array[String]) {
val monitor = new Requirements
val log = readlLog()
monitor.verify(log)

}
}

result

Monitor: CommandMustSucceed

Frror trace:
1=COMMAND(STOP_DRIVING,1)

Monitor: MaxOneSuccess

Error trace:
2=COMMAND (TAKE PICTURE, 2)
3=SUCCESS (TAKE PICTURE, 2)
4=SUCCESS (TAKE PICTURE, 2)

tracecontract 1.0 APl

g file:/f/Users /khavelun /Desktop/tracecontract/target/scala_2.8.0/doc/main/api/index.html

display packages only

200000000

DataBase
Error
ErrorTrace
Formulas
LivenessError
Monitor
MonitorResult
Property Result
SafetyError

hide focus

¢ |(Qr Google

(€) Monitor

class Monitor[Event] extends DataBase with Formulas[Event]

This class offers all the features of TraceContract. The user is expected to extend this class. The class is parameterized with the event type.
See the the explanation for the tracecontract package for a full explanation.

The following example illustrates the definition of a menitor with two properties: a safety property and a liveness property.

class Requirements extends Monitor[Event] {

requirement ('CommandMustSucceed) {
case COMMAND(x) =>
hot {
case SUCCESS(x) => ok
}
}

reguirement('CommandhtMostOnce) {
case COMMAND(x) =>

astate {
case COMMAND({ x~) => error
}
}
}
Event the type of events being monitored.

[=00 Hide All Show all || Formulas DataBase

AL Public

Instance constructors

new Monitor()
Type Members

type Block = PartialFunction[Event, Formula]
Defines the type of transitions out of a state.
class BooleanOps extends AnyRef
Generated by implicit conversion from Boolean.
class ElsePart extends AnyRef
The Eise part of an If (condition) Then formulai Eise formula2.
class EventFormulaOps extends AnyRef
Target if implicit conversion of events.
class Fact extends AnyRef
Facts to be added to and removed from the fact database.
class FactOps extends AnyRef
Operations on Facts.
class Formula extends AnyRef
Each different kind of formula supported by TraceContract is represented by an object or class that extends this class.
class IntOps extends AnyRef
Generated by implicit conversion from integer.
class IntPairOps extends AnyRef
Generated by implicit conversion from integer pair.
class ThenPart extends AnyRef
The Then part of an If (condition) Then formulal Else formula2.
type Trace = List[Event]

P

ger error(message: String): rormuia
Emits the error message provided as argument and evaluates to False.
def error: Formula
Emits an error message and evaluates to False.
def eventually(formula: Formula): Formula
Eventually true (an LTL formula).
def eventuallyBw(m: Int, n: Int, x: Int = 1)(formula: Formula): Formula
Eventually true between m and n steps.
def eventuallyEq(n: Int)(formula: Formula): Formula
Eventually true at step n.
def eventuallyGe(n: Int)(formula: Formula): Formula
Eventually true at or after minimally n steps.
def eventuallyGt(n: Int)(formula: Formula): Formula
Eventually true after n steps.
def eventuallylLe(n: Int)(formula: Formula): Formula
Eventually true in maximally n steps.
def eventuallyLt(n: Int)(formula: Formula): Formula
Eventually true in less than n steps.
def factExists(pred: PartialFunction[Fact, Boolean)): Boolean
Tests whether a fact exists in the fact database, which satisfies a predicate.
def getMonitorResult: MonitorResult[Event]
Returns the result of a trace analysis for this monitor.
def getMonitors: List[Monitor[Event])
Returns the sub-monitors of a monitor.
def globally(formula: Formula): Formula
Globally true (an LTL formula).
def hot(m: Int, n: Int)(block: PartialFunction[Event, Formula]): Formula
A hot state waiting for an event to eventually match a transition (required) between m and n steps.
def hot(block: PartialFunction[Event, Formula]): Formula
A hot state waiting for an event to eventually match a transition (required).
def informal(name: Symbol)(explanation: String): Unit
Used to enter explanations of properties in informal language.
def informal(explanation: String): Unit
Used to enter explanations of properties in informal language.
def matches(predicate: PartialFunction[Event, Boolean]): Formula
Matches current event against a predicate.
def monitor(monitors: Monitor[Event]*): Unit
Adds monitors as sub-monitors to the current monitor.
def never(formula: Formula): Formula
Never true (an LTL-inspired formula).
def not(formula: Formula): Formula
Boolean negation.
def ok(message: String): Formula
Emits the message provided as argument and evaluates to True.
def ok: Formula
Equivalent to True.

- - '

def eventuallyGt(n: Int)(formula: Formula): Formula
Eventually true after n steps.
def eventuallyLe(n: Int){formula: Formula): Formula
Eventually true in maximally n steps.
def eventuallyLt(n: Int)(formula: Formula): Formula
Eventually true in less than n steps.
def factExists(pred: PartialFunction[Fact, Boolean]): Boolean
Tests whether a fact exists in the fact database, which satisfies a predicate.
def getMonitorResult: MonitorResult[Event]
Returns the result of a trace analysis for this monitor.
def getMonitors: List[Monitor[Event]]
Returns the sub-monitors of a monitor.
def globally(formula: Formula): Formula
Glebally true (an LTL formula).
def hot(m: Int, n: Int)(block: PartialFunction[Event, Formula]): Formula
A hot state waiting for an event to eventually match a transition (required) between m and n steps.
def hot(block: PartialFunction[Event, Formula]): Formula

A hot state waiting for an event to eventually match a transition (required). The state remains active until the incoming event & matches the
block, that is, until block.isDefinedAt(e) == true, in which case the state formula evaluates to block(e).

At the end of the trace a hot state formula evaluates to False.
As an example, consider the following monitor, which checks the property: "a command x eventually should be followed by a success™

class Requirement extends Monitor[Ewvent] {
reguire {
case COMMAMD(x) =>
hot {
case SUCCESS(" x~) => ok

}
}
}
block partial function representing the transitions leading out of the state
returns the hot state formula.

definition classes: Formulas

def informal(name: Symbeol)(explanation: String): Unit
Used to enter explanations of properties in informal language.
def informal(explanation: String): Unit
Used to enter explanations of properties in informal language.
def matches(predicate: PartialFunction[Event, Boolean]): Formula
Matches current event against a predicate.
def monitor(monitors: Monitor[Event]*): Unit
Adds monitors as sub-monitors to the current monitor.
def never(formula: Formula): Formula
Never true (an LTL-inspired formula).

command verification in LADEE mission

command
seguence

>

verified
command
sequence

class R42 extends Monitor[Event] {
always {
case COMMAND("ACS_MODE", , timel,)=>
state {
case COMMAND("ACS", , time2,)=>
(timel,time2) beyond (1 second)

} TraceContract

implementation — formulas

abstract class Formula {
def apply(event: Event): Formula
def reduce(): Formula = this
def and(that: Formula): Formula = And(this, that).reduce()
def until(that: Formula): Formula = Until(this, that).reduce()

}...

states

case class State(block: Block) extends Formula {
override def apply(event: Event): Formula =
if (block.isDefinedAt(event)) block(event) else this

}

case class Step(block: Block) extends Formula {
override def apply(event: Event): Formula =
if (block.isDefinedAt(event)) block(event) else True

}

case class Strong(block: Block) extends Formula {
override def apply(event: Event): Formula =
if (block.isDefinedAt(event)) block(event) else False

}

// Hot the same

// Weak the same

globally and eventually

case class Globally(formula: Formula) extends Formula {
override def apply(event: Event): Formula =
And(formula(event), this).reduce()

}

case class Eventually(formula: Formula) extends Formula {
override def apply(event: Event): Formula =
Or(formula(event), this).reduce()

}

and

case class And(formulal: Formula, formula2: Formula) extends Formula {
override def apply(event: Event): Formula =
And(formulal(event), formula2(event)).reduce()

override def reduce(): Formula = {

(formulal, formula2) match {
case (False,) => False
case (_, False) => False
case (True,) => formula2
case (_, True) => formulal
case (f1, f2) if f1 ==f2 =>f1
case _ => this

at the end

def end(formula: Formula): Boolean =
formula match {
case State() =>true
case Hot(_) =>false

case Strong(_) => false
case Weak(_) =>true

case Step(_) =>true

case Globally() =>true
case Eventually(_) => false

case And(formulal, formula2) => end(formulal) && end(formula2)

}

future plans

* optimization
— internal DSL is not analyzable
— indexing: map incoming events to monitors

e application within LADEE mission
— feature refinement (expressiveness)

e trace analysis in a broader perspective:
— trace monitoring for embedded systems
— trace mining
— trace visualization

understanding complex systems

by analyzing their execution

