
A Scala API for Runtime Verification

Klaus Havelund

Jet Propulsion Laboratory

Pasadena, California

A Scala API for Runtime Verification

Klaus Havelund

Jet Propulsion Laboratory

Pasadena, California

DSL

A Scala API for Runtime Verification

Klaus Havelund

Jet Propulsion Laboratory

Pasadena, California

DSL

understanding complex systems
by analyzing their execution

log analysis

event

event
event

monitor

fault protection

event

response

monitor

a DSL for log analysis

a LogScope property

monitor CommandMustSucceed {
always {

COMMAND(n,x) => RequireSuccess(n,x)
}

hot RequireSuccess(name,number) {
FAIL(name,number) => error
SUCCESS(name,number) => ok

}
}

CommandMustSucceed:

“An issued command must succeed, without a failure to
occur before then”.

user reaction

excellent

• I read the manual and was
up an running, all before
lunch

• my first spec had no errors
and just worked

but (2 days later)

• can I define a function and
call it in a formula?

• is it possible to re-use
formulas?

external versus internal DSL

programming
language

DSL

parser

external DSL

programming
language

DSL

internal DSL

combines
parameterized
state machines
and temporal
logic.

pros and cons for internal DSL

pros

• decreases development
effort

• increases expressiveness

• allows use of existing IDE,
debuggers, etc.

cons

• steep learning curve

• limited analyzability

Scala as a unifier

script-like

high performance
with strong typing

object oriented functional

events

abstract class Event

case class COMMAND(name: String, nr: Int) extends Event
case class SUCCESS(name: String, nr: Int) extends Event
case class FAIL(name: String, nr: Int) extends Event

event
event
event

val trace : List[Event] =
List(

COMMAND("STOP_DRIVING", 1),
COMMAND("TAKE_PICTURE", 2),
SUCCESS("TAKE_PICTURE", 2),
SUCCESS("TAKE_PICTURE", 2)

)

monitor CommandMustSucceed {
always {

COMMAND(n,x) => RequireSuccess(n,x)
}

hot RequireSuccess(name,number) {
FAIL(name,number) => error
SUCCESS(name,number) => ok

}
}

class CommandMustSucceed extends Monitor[Event] {
always {

case COMMAND(n,x) => RequireSuccess(n,x)
}

def RequireSuccess(name: String, number: Int) =
hot {

case FAIL(`name`, `number`) => error
case SUCCESS(`name`, `number`) => ok

}
}

monitor CommandMustSucceed {
always {

COMMAND(n,x) => RequireSuccess(n,x)
}

hot RequireSuccess(name,number) {
FAIL(name,number) => error
SUCCESS(name,number) => ok

}
}

class CommandMustSucceed extends Monitor[Event] {
always {

case COMMAND(n, x) =>
hot {

case FAIL(`n`, `x`) => error
case SUCCESS(`n`, `x`) => ok

}
}

}

inlining a state

monitor CommandMustSucceed {
always {

COMMAND(n,x) => RequireSuccess(n,x)
}

hot RequireSuccess(name,number) {
FAIL(name,number) => error
SUCCESS(name,number) => ok

}
}

class CommandMustSucceed extends Monitor[Event] {
always {

case COMMAND(n, x) =>
not(FAIL(n, x)) until (SUCCESS(n, x))

}
}

linear temporal logic

monitor CommandMustSucceed {
always {

COMMAND(n,x) => RequireSuccess(n,x)
}

hot RequireSuccess(name,number) {
FAIL(name,number) => error
SUCCESS(name,number) => ok

}
}

class CommandMustSucceed extends Monitor[Event] {
var count = 0
always {

case COMMAND(n, x) if count < 10 =>
count += 1
not(FAIL(n, x)) until (SUCCESS(n, x))

}
}

first 10 commands must succeed

class Monitor[Event] {
…
type Block = PartialFunction[Event, Formula] (*\label{type-block}*)

// states:
def always(block: Block): Formula
def state(block: Block): Formula
def hot(block: Block): Formula
def step(block: Block): Formula
def strong(block: Block): Formula
def weak(block: Block): Formula

// future time temporal logic:
def not(formula: Formula): Formula
def globally(formula: Formula): Formula
def eventually(formula: Formula): Formula
def strongnext(formula: Formula): Formula
def matches(predicate: PartialFunction[Event, Boolean]): Formula
def within(time: Int)(formula: Formula): Formula

}

the state function

class MaxOneSuccess extends Monitor[Event] {
always {

case SUCCESS(_, number) =>
state {

case SUCCESS(_, `number`) => error
}

}
}

CommandMustSucceed:

“An issued command can succeed at most once”.

analyzing a trace

class Requirements extends Monitor[Event] {
monitor(

new CommandMustSucceed,
new MaxOneSuccess

)
}

compose

object Apply {
def readLog(): List*Event+ = ,…-

def main(args: Array[String]) {
val monitor = new Requirements
val log = readLog()
monitor.verify(log)

}
}

run

result

Monitor: CommandMustSucceed

Error trace:

1=COMMAND(STOP_DRIVING,1)

Monitor: MaxOneSuccess

Error trace:

2=COMMAND(TAKE_PICTURE,2)

3=SUCCESS(TAKE_PICTURE,2)

4=SUCCESS(TAKE_PICTURE,2)

command verification in LADEE mission

command
sequence

class R42 extends Monitor[Event] {
always {

case COMMAND("ACS_MODE", _, time1, _) =>
state {

case COMMAND("ACS", _, time2, _) =>
(time1,time2) beyond (1 second)

}
}

}

verified
command
sequence

implementation – formulas

abstract class Formula {
def apply(event: Event): Formula
def reduce(): Formula = this
def and(that: Formula): Formula = And(this, that).reduce()
def until(that: Formula): Formula = Until(this, that).reduce()
...

}

states

case class State(block: Block) extends Formula {
override def apply(event: Event): Formula =

if (block.isDefinedAt(event)) block(event) else this
}

case class Step(block: Block) extends Formula {
override def apply(event: Event): Formula =

if (block.isDefinedAt(event)) block(event) else True
}

case class Strong(block: Block) extends Formula {
override def apply(event: Event): Formula =

if (block.isDefinedAt(event)) block(event) else False
}

// Hot the same

// Weak the same

globally and eventually

case class Globally(formula: Formula) extends Formula {
override def apply(event: Event): Formula =

And(formula(event), this).reduce()
}

case class Eventually(formula: Formula) extends Formula {
override def apply(event: Event): Formula =

Or(formula(event), this).reduce()
}

and

case class And(formula1: Formula, formula2: Formula) extends Formula {
override def apply(event: Event): Formula =

And(formula1(event), formula2(event)).reduce()

override def reduce(): Formula = {
(formula1, formula2) match {

case (False, _) => False
case (_, False) => False
case (True, _) => formula2
case (_, True) => formula1
case (f1, f2) if f1 == f2 => f1
case _ => this

}
}

}

at the end

def end(formula: Formula): Boolean =
formula match {

case State(_) => true
case Hot(_) => false

case Strong(_) => false
case Weak(_) => true

case Step(_) => true
…
case Globally(_) => true
case Eventually(_) => false
…

case And(formula1, formula2) => end(formula1) && end(formula2)
}

future plans

• optimization
– internal DSL is not analyzable
– indexing: map incoming events to monitors

• application within LADEE mission
– feature refinement (expressiveness)

• trace analysis in a broader perspective:
– trace monitoring for embedded systems
– trace mining
– trace visualization

understanding complex systems
by analyzing their execution

