Delta-Complete Reachability Analysis

Sicun(Sean) Gao

(Joint work with Ed Clarke and Jeremy Avigad)

Carnegie Mellon University

Apr 22, 2011

Hybrid Systems

latisrs H = (X,Q, Init, Flow, Jump, Inv)
m X C RF: state space

Q: a finite set of modes

Init C Q x X: initial configurations
Flow :C) x X — TX: continuous flows
Jump :C Q x X — 29%X: discrete jumps

Inv C @ X X: invariants in each mode

Given Unsafe C R* x Q, [H] N Unsafe = ()?

Example (Transmission Controller)

m X =R3 (v: Speed, Th: Throttle, Fr: Friction)

Q =1{q1,42,q3} (Gears)

Init = (q1,Th =0.2 Av = 0)

m [nvg, 10 <wv <30, Invg, : 25 < v <50, Invg, : 45 < v < 70.

dF
B Flowg, : d—: = c¢i(a;Th — b;Fr) A d—tr = e;v°.
B Jumpg, 4, (v>20ATh> 0.6 Av'=vATh =Th), etc.

Is (g2, Th = 0.1 A v < 30) reachable?

Hybrid System Verification is Hard.

Intro

m Although there are successful examples, most of the
practical systems can not be handled.

m Main Approaches:
m Geometric Methods

Over-estimate [H] up to some time bound ¢.
Check if [H]<" N Unsafe = 0.

m Proof-theoretic Methods

Show that ®(H) - = Unsafe is derivable
syntactically in a sound axiomatic system.

Geometric Methods

Pros:

m Computations can be made visible.
fntxo m Very helpful for the general understanding of behavior.
Cons:

m High complexity; error control is hard.

m Hard to handle complex dynamics or high dimensions.

m Hard to handle logical operations.

2 < N’
| .-

oo

Proof-theoretic Approaches

Pros:
m Highly complex systems/properties.
LS m Reliable answers.
m No bounds on variables.
Cons:
m Not for debugging.
m Finding invariants needs much human insight.

m Underlying decision procedures can be hard to scale.

RBC

T p——
far ST neg SB cor MA

Stepping Back

What made traditional model checking scale?
Intro
m Encode verification problems into logic formulas.
m View (X, —) as a logical structure.
m Encode properties of interest as a
temporal/propositional formula ¢.

m Check satisfiability of formulas using highly efficient
solvers.

m (X, =) g7
m Use BDD/SAT/SMT solvers to find a model of .

Comparison: debugging information, flexible; not visible, bounded

Model-theoretic Methods (Discrete Systems)

Let M denote the transition system (X, —).
m Bounded Reachability

Encoding
=3 n—1

M | Iy, ..., &, (Init(Zo) /\ Trans(Z;, Zi+1) A Target(Z,))?
m Reachable Set Computatilor?
[3Zo, ..., Zp—1 (Init(Zo) ”/\1 Trans x17x1+1))ﬂM =7
m Synthesis Problems o
[VZo, ..., Tn (Init(Zo) A ”/*\1 Control(Z;, Zit1, U;) A
Target(z,))]™M =? -

Model-theoretic Methods (Continuous Systems)

Logical encoding is not limited to discrete systems.

Encoding
dz(t >
m Continuous Dynamics: Zt) (Z(t),t)

m The solution curve: .
a:R—= X, a(t) = a(0) +/ Fla(s), s)ds.
m Define the predicate ’
[Flowy (Zo, %, t)]M = {(Zo, Z,t) : a(0) = T, a(t) = &}

m Reachability
M = 3, t, & (Init(Zo) A Flows (Z, Zo, t) A Target(Z)) ?

Model-theoretic Methods (Hybrid Systems)

Combine the discrete and continuous components!:

0 =\ .
A m Reachg . () :
Encoding

FtoIZy (Invg, (Zo) A Invg, (Z) A Flow,, (Z, Zo, to))
+1 (=
m Reachy", () :
ST L AIPE

\/ [Rea’Ch:]lo—)q/ (fn—&-l) A Jump(/—}g (f”-i-l? 'T?'/n—&-l)
7eQ
NFlowg (%, %, 1, tny1) A Invg(Z7) A Invg (27,)]

H = Reach™ ! (%) A Unsafe(¥)?

q0—q

1 . P . . .
Assumption: In each location, the flow stays withini the invariant before any jamp:

Decision Procedures over Reals

Sadly, in general those first-order formulas over R can never
be decided.

Robustness

m The arithmetic theory (x/+) is decidable but highly

CompleX (double-exponential, PSPACE).

m Available solvers: Usually hard to scale to more than 10
variables.

m Handling nontrivial systems will involve (in the Flow
predicate) exp, sin / cos, ODFEs, ...

m Wildly undecidable.

Allowing Errors

On the other hand, large systems of real
el cqualities/inequalities/ODEs are routinely solved
numerically.

m They are perfect for simulation, but always regarded
inappropriate for verification.

m (Platzer and Clarke, HSCC 2008)

m Is there a way of using them still?

Allowing Errors

Decide
JZ.f(Z) =0 A g(Z) =0.

Robustness

m Symbolically: We need to consider the global algebraic
properties of f and g.

m Numerically: We use iterations that only involve local
evaluations of [and ¢ (and their derivatives).

m With error bound §, we’d “numerically” decide:

IZ.|F(Z)] < 8 A |g(&)] < 6.

Robust Formulas

Consider any formula

¢ =3z \/(/\ fil@) =0A /\gj(f) #0)

Robustness

Define its -perturbed form

o =3 EN(NF@) <68 N\ gi(@) 2 0)

J

We say ¢ is d-robust iff

P

Robust Formulas (Decidability)

Robust formulas have very nice computational properties.

Definition

el R — (R, 7, <) where F is the set of all real-computable
functions. (Type-II computability; exp, sin, ODEs...)

Let ¢ be a robust and bounded sentence (arbitrary
quantification):

Theorem

Rr = ¢ is decidable.

The proof simulates cylindrical decomposition.

Robust Formulas (Complexity)

In particular, if ¢ is existentially quantified:

Theorem

Robustness If F|p is real-computable in complexity class C, then
deciding ¢ is in NPC.

This means:

Corollary

Deciding robust bounded existential sentences
in L4 x expsin 18 NP-complete.
in LLipschitzopE 15 PSPACE-complete.

Not Just in Theory

We are developing the practical SMT solver dReal.

m DPLL(T) + Interval Constraint Propagation.

m SAT solver handles Boolean skeleton, ICP handles
systems of equations (scalable to 10 variables) .

Solving

m Currently solvable signature: +/x,exp, sin
m (Gao et al. FMCAD2010)

m In progress: (numerically stable) nonlinear ODEs

Interval Constraint Propagation

m Interval Arithmetic + Constraint Solving

Example

Solving

Solve {z = y,z? =y} for z € [1,4] and y € [1,5]:
I?: [1,4] — [1,v/5] = [1, V5] = [1,¥/5] = [1, V5] — -+ — [1,1]
1Y : [1,5] = [1,v/5] = [1, V5] = [1, V5] — [1, V/5] = -+ — [1,1]

m [CP routinely handles thousands of variables and highly
nonlinear constraints.

Correctness Guarantee (Formula)

For any existential formula ¢ (robust or nonrobust), with a
tunable error bound ¢, we know:

Solver says “unsat”=- ¢ is d-robustly unsatisfiable.
Correctness m Unsatisfiable under any perturbation up to 9.

Solver says “sat” = ¢ may be unsatisfiable, but ¢° is
satisfiable.

m [t means we do know that a syntactically-perturbed
version of ¢(Z) is satisfiable.

This is what we call §-completeness.

Robust Hybrid Systems

Let H = (X, Q, Init, Flow, Jump, Inv).

Similarly, we can define §-robust hybrid systems:
Correctness - H6 — <X,Q, Inlté, FlO'U}(S, Jump67]TLU6>

m # is d-robust if
H ~o.bistm H(S

Delta-Complete Bounded Model Checking

When model checking H:

@ Reach%” is unsat < H is safe up to n

Correctness

p is “unsat”=- H is d-robustly safe.
m #° is safe under any d-perturbation .

@ is “sat”= 3 d-perturbation &, H is unsafe.
m The solver returns a solution that shows bug.

This is even better than precise solvers!

Delta-Complete Bounded Model Checking

Pros:
m Highly scalable numerical algorithms and SAT solvers

m Possible to scale to complex dynamics and large
dimensions

m No accumulation of numerical errors

Correctness
m Strong robustness check
m Counterexamples

Cons:

Bounded variables (can be very loose)

Bounded unwinding depth

Computations are not visible

Debugging, not verifying (yet!)

Conclusion

m Standard model checking techniques (from HW/SW)
can be used in realistic continuous/hybrid systems, as
long as we have the solver.

m For any solver to scale in this domain, numerical
methods have to be exploited.

m Surprisingly, numerical methods will give us stronger
results.

m We are developing dReal and dReach.

“Errors are good (if they work for the verification side).”

	Intro
	Encoding
	Robustness
	Solving
	Correctness
	End

