
Intro

Encoding

Robustness

Solving

Correctness

End

Delta-Complete Reachability Analysis

Sicun(Sean) Gao
(Joint work with Ed Clarke and Jeremy Avigad)

Carnegie Mellon University

Apr 22, 2011

Intro

Encoding

Robustness

Solving

Correctness

End

Hybrid Systems

H = 〈X,Q, Init ,Flow , Jump, Inv〉
X ⊆ Rk: state space

Q: a finite set of modes

Init ⊆ Q×X: initial configurations

Flow :⊆ Q×X → TX: continuous flows

Jump :⊆ Q×X → 2Q×X : discrete jumps

Inv ⊆ Q×X: invariants in each mode

Given Unsafe ⊆ Rk ×Q, JHK ∩Unsafe = ∅?

Intro

Encoding

Robustness

Solving

Correctness

End

Example

Example (Transmission Controller)

X = R3 (v: Speed, Th: Throttle, Fr: Friction)

Q = {q1, q2, q3} (Gears)

Init = (q1, Th = 0.2 ∧ v = 0)

Invq1 : 0 ≤ v ≤ 30, Invq2 : 25 ≤ v ≤ 50, Invq3 : 45 ≤ v ≤ 70.

Flowqi :
dv

dt
= ci(aiTh− biFr) ∧

dFr

dt
= eiv

2.

Jumpq1 ,q2 : (v ≥ 20 ∧ Th > 0.6 ∧ v′ = v ∧ Th′ = Th), etc.

Is (q2, Th = 0.1 ∧ v < 30) reachable?

Intro

Encoding

Robustness

Solving

Correctness

End

Hybrid System Verification is Hard.

Although there are successful examples, most of the
practical systems can not be handled.

Main Approaches:
Geometric Methods

1 Over-estimate JHK up to some time bound t.
2 Check if JHK<t ∩Unsafe = ∅.

Proof-theoretic Methods

1 Show that Φ(H) ` ¬Unsafe is derivable
syntactically in a sound axiomatic system.

Intro

Encoding

Robustness

Solving

Correctness

End

Geometric Methods

Pros:

Computations can be made visible.

Very helpful for the general understanding of behavior.

Cons:

High complexity; error control is hard.

Hard to handle complex dynamics or high dimensions.

Hard to handle logical operations.

Intro

Encoding

Robustness

Solving

Correctness

End

Proof-theoretic Approaches

Pros:

Highly complex systems/properties.

Reliable answers.

No bounds on variables.

Cons:

Not for debugging.

Finding invariants needs much human insight.

Underlying decision procedures can be hard to scale.

Intro

Encoding

Robustness

Solving

Correctness

End

Stepping Back

What made traditional model checking scale?

Encode verification problems into logic formulas.

View 〈X,→〉 as a logical structure.
Encode properties of interest as a
temporal/propositional formula ϕ.

Check satisfiability of formulas using highly efficient
solvers.

〈X,→〉 |= ϕ?
Use BDD/SAT/SMT solvers to find a model of ϕ.

Comparison: debugging information, flexible; not visible, bounded

Intro

Encoding

Robustness

Solving

Correctness

End

Model-theoretic Methods (Discrete Systems)

Let M denote the transition system 〈X,→〉.
Bounded Reachability

M |= ∃~x0, ..., ~xn(Init(~x0) ∧
n−1∧
i=0

Trans(~xi, ~xi+1) ∧ Target(~xn))?

Reachable Set Computation

J∃~x0, ..., ~xn−1(Init(~x0) ∧
n−1∧
i=0

Trans(~xi, ~xi+1))KM =?

Synthesis Problems

J∀~x0, ..., ~xn(Init(~x0) ∧
n−1∧
i=0

Control(~xi, ~xi+1, ~ui) ∧

Target(~xn))KM =?

Intro

Encoding

Robustness

Solving

Correctness

End

Model-theoretic Methods (Continuous Systems)

Logical encoding is not limited to discrete systems.

Continuous Dynamics:
d~x(t)

dt
= ~f(~x(t), t)

The solution curve:

α : R→ X, α(t) = α(0) +

∫ t

0

~f(α(s), s)ds.

Define the predicate

JFlowf (~x0, ~x, t)KM = {(~x0, ~x, t) : α(0) = ~x0, α(t) = ~x}

Reachability
M |= ∃~x0, t, ~x (Init(~x0) ∧ Flowf (~x, ~x0, t) ∧ Target(~x)) ?

Intro

Encoding

Robustness

Solving

Correctness

End

Model-theoretic Methods (Hybrid Systems)

Combine the discrete and continuous components1:

Reach0
q0→q0(~x) :

∃t0∃~x0 (Invq0(~x0) ∧ Invq0(~x) ∧ Flowq0(~x, ~x0, t0))

Reachn+1
q0→q(~x) :

∃tn+1∃~xn+1∃~x′n+1∨
q′∈Q

[Reachn
q0→q′(~xn+1) ∧ Jumpq′→q(~xn+1, ~x

′
n+1)

∧Flowq(~x, ~x′n+1, tn+1) ∧ Invq(~x′) ∧ Invq(~x′n+1)]

H |= Reachn+1
q0→q(~x) ∧Unsafe(~x)?

1
Assumption: In each location, the flow stays within the invariant before any jump.

Intro

Encoding

Robustness

Solving

Correctness

End

Decision Procedures over Reals

Sadly, in general those first-order formulas over R can never
be decided.

The arithmetic theory (×/+) is decidable but highly
complex (double-exponential, PSPACE).

Available solvers: Usually hard to scale to more than 10
variables.

Handling nontrivial systems will involve (in the Flow
predicate) exp, sin / cos,ODEs, ...

Wildly undecidable.

Intro

Encoding

Robustness

Solving

Correctness

End

Allowing Errors

On the other hand, large systems of real
equalities/inequalities/ODEs are routinely solved
numerically.

They are perfect for simulation, but always regarded
inappropriate for verification.

(Platzer and Clarke, HSCC 2008)

Is there a way of using them still?

Intro

Encoding

Robustness

Solving

Correctness

End

Allowing Errors

Decide
∃~x.f(~x) = 0 ∧ g(~x) = 0.

Symbolically: We need to consider the global algebraic
properties of f and g.

Numerically: We use iterations that only involve local
evaluations of f and g (and their derivatives).

With error bound δ, we’d “numerically” decide:

∃~x.|f(~x)| < δ ∧ |g(~x)| < δ.

Intro

Encoding

Robustness

Solving

Correctness

End

Robust Formulas

Consider any formula

ϕ := ∃I~x~x.
∨

(
∧
i

fi(~x) = 0 ∧
∧
j

gj(~x) 6= 0)

Define its δ-perturbed form

ϕδ := ∃I~x~x.
∨

(
∧
i

fi(~x) < δ ∧
∧
j

gj(~x) ≥ δ)

We say ϕ is δ-robust iff

ϕ↔ ϕδ.

Intro

Encoding

Robustness

Solving

Correctness

End

Robust Formulas (Decidability)

Robust formulas have very nice computational properties.

Definition

RF = 〈R,F , <〉 where F is the set of all real-computable
functions. (Type-II computability; exp, sin, ODEs...)

Let ϕ be a robust and bounded sentence (arbitrary
quantification):

Theorem

RF |= ϕ is decidable.

The proof simulates cylindrical decomposition.

Intro

Encoding

Robustness

Solving

Correctness

End

Robust Formulas (Complexity)

In particular, if ϕ is existentially quantified:

Theorem

If F|ϕ is real-computable in complexity class C, then
deciding ϕ is in NPC.

This means:

Corollary

Deciding robust bounded existential sentences

1 in L+,×,exp,sin is NP-complete.

2 in LLipschitzODE is PSPACE-complete.

Intro

Encoding

Robustness

Solving

Correctness

End

Not Just in Theory

We are developing the practical SMT solver dReal.

DPLL(T) + Interval Constraint Propagation.

SAT solver handles Boolean skeleton, ICP handles
systems of equations (scalable to 103 variables) .

Currently solvable signature: +/×, exp, sin

(Gao et al. FMCAD2010)

In progress: (numerically stable) nonlinear ODEs

Intro

Encoding

Robustness

Solving

Correctness

End

Interval Constraint Propagation

Interval Arithmetic + Constraint Solving

Example

Solve {x = y, x2 = y} for x ∈ [1, 4] and y ∈ [1, 5]:
Ix : [1, 4]→ [1,

√
5]→ [1, 4

√
5]→ [1, 8

√
5]→ [1, 16

√
5]→ · · · → [1,1]

Iy : [1, 5]→ [1,
√

5]→ [1, 4
√

5]→ [1, 8
√

5]→ [1, 16
√

5]→ · · · → [1,1]

ICP routinely handles thousands of variables and highly
nonlinear constraints.

Intro

Encoding

Robustness

Solving

Correctness

End

Correctness Guarantee (Formula)

For any existential formula ϕ (robust or nonrobust), with a
tunable error bound δ, we know:

1 Solver says “unsat”⇒ ϕ is δ-robustly unsatisfiable.

Unsatisfiable under any perturbation up to δ.

2 Solver says “sat” ⇒ ϕ may be unsatisfiable, but ϕδ is
satisfiable.

It means we do know that a syntactically-perturbed
version of ϕ(~x) is satisfiable.

This is what we call δ-completeness.

Intro

Encoding

Robustness

Solving

Correctness

End

Robust Hybrid Systems

Let H = 〈X,Q, Init ,Flow , Jump, Inv〉.

Similarly, we can define δ-robust hybrid systems:

Hδ = 〈X,Q, Initδ,Flow δ, Jumpδ, Inv δ〉

H is δ-robust if
H ∼σ.bisim Hδ

Intro

Encoding

Robustness

Solving

Correctness

End

Delta-Complete Bounded Model Checking

When model checking H:

ϕ : Reach≤nH is unsat⇔ H is safe up to n

1 ϕ is “unsat”⇒ H is δ-robustly safe.

H~c is safe under any δ-perturbation ~c.

2 ϕ is “sat”⇒ ∃ δ-perturbation ~c, H~c is unsafe.

The solver returns a solution that shows bug.

This is even better than precise solvers!

Intro

Encoding

Robustness

Solving

Correctness

End

Delta-Complete Bounded Model Checking

Pros:

Highly scalable numerical algorithms and SAT solvers

Possible to scale to complex dynamics and large
dimensions

No accumulation of numerical errors

Strong robustness check

Counterexamples

Cons:

Bounded variables (can be very loose)

Bounded unwinding depth

Computations are not visible

Debugging, not verifying (yet!)

Intro

Encoding

Robustness

Solving

Correctness

End

Conclusion

Standard model checking techniques (from HW/SW)
can be used in realistic continuous/hybrid systems, as
long as we have the solver.

For any solver to scale in this domain, numerical
methods have to be exploited.

Surprisingly, numerical methods will give us stronger
results.

We are developing dReal and dReach.

“Errors are good (if they work for the verification side).”

	Intro
	Encoding
	Robustness
	Solving
	Correctness
	End

