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® Used in abstract interpretation, model-checking,...

® System properties and specifications are abstracted
as an algebraic lattice (abstraction-specific encoding
of properties)

omputational | odeling and - nalysis for - omplex —ystems . omputational | odeling and nalysis for - omplex —ystems

Unifying proof theoretic/logical | |
. . ® Fully automatic: system properties are computed as
and algebraic abstractions for fixpoints of algebraic transformers

inference and verification ® Several separate abstractions can be combined with
the reduced product
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Proof theoretic/logical abstractions
® Used in deductive methods

® System properties and specifications are expressed
with formule of first-order theories (universal
encoding of properties)

ObJeCtlve ® Partly automatic: system properties are provided

manually by end-users and automatically checked to
satisfy verification conditions (with implication
defined by the theories)

® Various theories can be combined by Nelson-Oppen
procedure
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Obijective

® Show that proof-theoretic/logical abstractions are a
particular case of algebraic abstractions

® Show that Nelson-Oppen procedure is a particular
case of reduced product

® Use this unifying point of view to propose a new
combination of logical and algebraic abstractions

w Convergence of proof theoretic/
logical and algebraic property-
inference and verification methods
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Programs (syntax)

® Expressions (on a signature (f, p))
X,Y,Z,... € X variables
a,b,c,... € 0 constants

f,g,h,... e ", 2 U £ function symbols of arity n > 1

t € T(x,f) t o= x|c|f(t,....t,) terms

p,aq,T,... € p", p’2{ff,tt}, p =2 UsoD" predicate symbols of arity n > 0,
a € A(x, f,p) a == ff|p,..., t,) | ~a atomic formula
e € E(x,f,p) £ T(x, ) U A(x, f,p) program expressions

clauses in simple conjunctive nor-
mal form

¢ € C(x.£,p) pu=aleng

® Programs (including assignment, guards, loops, ...)

P,... € P(x,t,p) Pu=x:=el|gp]... programs
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Concrete semantics
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Programs (interpretation)

® |nterpretation I € § for a signature (&, p) is Ly, L)
such that
— Iy is a non-empty set of values,
— Veef': (o) ely, VYn>1:VEfef": L(f) el},—ly,
— V¥n>0:VYpep": L(p) el -8B B = {false, true}
® Environments
neR, = x—ly environments

® Expression evaluation
[a],n € B of an atomic formula a € A(x, f, p)
[£],m € Iy of the term ¢ € T(x, f)
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Programs (concrete semantics)

® The program semantics is usually specified relative to
a standard interpretation J € 3

® The concrete semantics is given in post-fixpoint form
(in case the least fixpoint which is also the least post-
fixpoint does not exist, e.g. inexpressibility in Hoare
logic)
Ry concrete observables®

Py ©P(Rs) concrete properties
F4[P] € P3—Py concrete transformer of program P
€

Cy[P] = postfp= Fy[P]

1>

P(Pg) concrete semantics of program P

where postfp* f = { x| f(x) < x|

5Examplcs of observables are set of states, set of partial or complete execution traces, infinite/transfinite execution trees, etc.
'S o) ©A property is understood as the set of elements satisfying this property.
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Concrete domains

® The standard semantics describes computations of a
system formalized by elements of a domain of
observables Ry (e.g., set of traces, states, etc)

The properties g = 9(Rg) (a property is the set of
elements with that property) form a complete lattice

(Psg, S, 0, Ry, U, N)

® The concrete semantics Cg[P] = postfp= F5[P] defines the
system properties of interest for the verification

® The transformer F[P] is defined in terms of primitives,

e.g.
fy[x :=e]P = {n[x « [e],n] | n € P)} Floyd’s assignment post-condition
pslelP = {neP|[¢l,n=true}  test

2
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Example of program concrete semantics

® Program P 2 x=1; while true {x=incr(x)}

® Arithmetic interpretation 9 on integers I = Z

® Loop invariant Ifp< F[P] ={n € Ry |0 <nx)}

where Ry = x—Jq, concrete environments
Fg[P](X) £ {n € Ry | n(x) = 1} U {nlx < n(x) + 11| n € X}
® The strongest invariant is 1fp= F4[P] = N postfp~ F[P]

® Expressivity: the lfp may not be expressible in the
abstract in which case we use the set of possible
invariants Cgy[P] = postfp= Fy[P]

acs' 4
I NSF CMACS expedition, Pl meeting, Universicy of Maryland, College Park, MD, 04/28-29/201 1 10 © P Cousot %’

Extension to multi-interpretations
® Programs have many interpretations 1 € 9(3).

® Multi-interpreted semantics

Ri program observables for interpretation / € 7
Pr = 1€ o(Rp) interpreted properties for the set of interpretations 7

P My Ie I AneR)®

>

13

F/[P] € Pr—Pr multi-interpreted concrete transformer of program P
2 AP e Py Al € I« F[P](P())

C;[P] € p(Pr) multi-interpreted concrete semantics
£ postfp F, [P]

where C is the pointwise subset ordering.

SA partial function f € A -» B with domain dom(f) € ¢(A) is understood as the relation {(x, f(x)) € A X B | x € dom(f)}
and maps x € A to f(x) € B, written x € A > f(x) e Borx € A /> B, whenVx € A : f(x) € B; C B.
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Algebraic Abstractions
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Abstract semantics

e A abstract domain
o L abstract logical implication

o F[P] € A > A sbstract transformer defined in term
of abstract primitives

f e (xxE(x,f,p)>A—A abstract forward assignment transformer

b € (xxE(x,f,p))>A—A abstract backward assignment transformer
p e Cxf,p)oA—A abstract condition transformer.

e C[P] = {ip“F[P]} least fixpoint semantics, if any

e C[P] = {P | F[P[(P) C P} or else, post-fixpoint

abstract semantics
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Abstract domains

(A,C,1,7,u,nV,Afb,B,...)
where
P, @, ...EA abstract properties
CeAXA—>8B abstract partial order®

1, T eA infimum, supremum
L,mnV,A e AXA—A abstract join, meet, widening, narrowing

f e (xxE(x,f,p))>A—A abstract forward assignment transformer
b € (xxE(x,f,p)—A—A abstract backward assignment transformer
p e Cx,f,ppoA—>A abstract condition transformer.
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Soundness of the abstract semantics

® Concretization
v € AL>7)5

® Soundness of the abstract semantics
VPeA:(ACeC[P]: CC P)= (ACeC[P]: C Cy(P))

® Sufficient local soundness conditions:
(1_9 C @) = (7(?) C y(a)) order y(L)=0 infimum
y(PU Q)2 (¥(P)Uy(Q) join ¥(T)=Tg supremum

y(f[x := e]P) 2 fs[x := e]y(P) assignment post-condition
y(b[x := e]P) 2 bg[x := e[y(P) assignment pre-condition
Y(Ple]P) 2 psle]¥(P) test

implying 5 ¢ 4. F[p] - y(P) c v - F[P](P)

B8] NsF CMACS expedition, PI meeting, University of Maryland, College Park, MD, 04/28-29/2011 16 © P Cousot
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Beyond bounded verification: Widening

® Definition of widening:
Let (A, T) be a poset. Then an over-approximating widening V €
A XA v Ais such that
() Vx,ye A:xCxVyAy<xVy'"

A terminating widening V € A X A — A is such that

(b) Given any sequence {x", n > 0), the sequence y° =
K0, .,y =y VX, L converges (i.e. A0 € N :
Vn > € :y" = y' in which case y' is called the limit
of the widened sequence (y", n > 0)).

Traditionally a widening is considered to be both over-approximating
and terminating. O
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Implementation notes

® Each abstract domain (A,C, 1, T,U,M,V,A,f,b,p,...)
is implemented separately by hand, by providing a
specific computer representation of properties in A ,
and algorithms for the logical operations C, L, T,u,m,

and transformers f,b,p,...

® Different abstract domains are combined into a
reduced product

® Very efficient but implemented manually (requires
skilled specialists)

Beyond bounded verification:Widening

® |terations with widening

The iterates of a transformer F[P] € A + A from the infimum

1 € A with widening V € A X A — A in a poset (A, C) are defined
— el . — — -

by recurrence as F = L F" = F" when F[P|[(F) c F and

—n+1

F =F VF[P|(F") otherwise. O

® Soundness of iterations with widening

The iterates in a poset (A, C, L) of a transformer F[[P]] from the
infimum L with widening V converge and their limit is a post-fixpoint
of the transformer. |
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First-order logical formulae & satisfaction
® Syntax
Y e F(x,f,p) Yi=al|-Y|IYAY|Ix:¥Y quantified first-order formula
a distinguished predicate = (¢, t,) which we write t; = f,
® Free variables Xy

® Satisfaction
IE,Y, interpretation / and an environment 7 satisfy a formula ¥

® Equality
I '=’I h=n = IItl]]ln =1 |Il2]]17]

where =; is the unique reflexive, symmetric, antisymmetric, and transitive relation on Iy .
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Defining multiple interpretations as models of theories

® Theory: set 4 of theorems (closed sentences
without any free variable)

® Models of a theory (interpretations making true all
theorems of the theory)

MT) = eI |VWeT :dn: 1k, V)
= ([e3|VYeT :Vn: Ik, ¥)
9\,5 NSF CMACS expedition, Pl meeting, University of Maryland, College Park, MD, 04/28-29/201 | 23 © P.Cousot T—f’i

Extension to multi-interpretations

® Property described by a formula for multiple
interpretations

I € p(J)
® Semantics of first-order formulae

7]' < IF(X9 ﬂ?’ ]p)API
vi) = L, mlIeInlE, Y}

® But how are we going to describe sets of
interpretations I € p(3) !
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Classical properties of theories

® Decidable theories: ¥¥ € F(x, £, p) : decide+(¥) £ (¥ € T) is
computable

® Deductive theories: closed by deduction

VW e T : VW € F(x,f,p), if ¥ = ¥ implies ¥ € T
® Satisfiable theory:

M(T) # 0

® Complete theory:

for all sentences W in the language of the theory, either ¥ is in the
theory or =V is in the theory.

CIE
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Checking satisfiability modulo theory
® Validity modulo theory

validr (W) = YIeWT):Vn: 1k, ¥
® Satisfiability modulo theory (SMT)

satisfiable;(¥) 2 37 € M(T) : Ip: [ =, ¥

® Checking satisfiability for decidable theories

satisfiable 7(¥) & - (decide 7 (YXy : ='F)) (when 7™ is decidable and deductive)

satisfiable -(¥) < (decides3Ry : P)) (when 7~ is decidable and complete)

® Most SMT solvers support only quantifier-free
formulae

ac 7((/17‘
1
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Logical abstract domains

(A, T): A € p(F(x,f,p)) abstract properties

T theory of F(x,f,p)

® Abstract domain (A,LC, ff, tt,V, A, V, A, ., Be, Py - - )

Logical implication (WE¥Y) 2 (VR UZp : ¥ = ¥)eT)
® A lattice but in general not complete

® The concretization is

Yo = (L, my | 1€ MT) AT I, )
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Logical Abstractions

QPN NSF CMACS expedition, Pl meeting, University of Maryland, College Park, MD, 04/28-29/201 | 26 © P.Cousot (?’

Logical abstract semantics
® [ogical abstract semantics
C'[Pl = {¥|F,[PIl(¥) C ¥}
® The logical abstract transformer ' FE[P] € A—A is
defined in terms of primitives

f, € (x X T(x,f)) >A—A abstract forward assignment trans-

_ former
b, € (xXxT(x,f))>A—A abstract backward assignment
transformer

P, € LoASA condition abstract transformer

B NSF CMACS expedition, PI meeting, University of Maryland, College Park, MD, 04/28-29/201 | 28 © P.Cousot (?’




Implementation notes ...

® Universal representation of abstract properties by
logical formulae

® Trival implementations of logical operations ff, tt, Vv, A,

® Provers or SMT solvers can be used for the abstract
implication. C,

® Concrete transformers are purely syntactic
fa

m

(xx T(x, ) > Fx, £, p) > F(x, f,p) axiomatic forward assignment trans-

Example | of widening: thresholds

® Choose asubset W  of A  satisfying the
ascending chain condition for C,

® Define X VY to be (one of) the strongest ¥ € W

such that ¥ => ¥

Example Il of bounded widening: Craig interpolation

® Use Craig interpolation (knowing a bound e.g.

f[x:=f]¥ 2 I : P[x « X]Ax =t[x « X] former the SPeCiﬁcation)
b, € (xxT(x,1))—>F(x, f,p)>F(x, f,p) axiomatic backward assignment trans-
ba[x := ¥ 2 Wx — 1] former ® Move to thresholds to enforced convergence
p, € Cx, I, p)>Fx, £, p) > F(x, £, p) axiomatic transformer for program test after k Widenings Wlth Craig interpo'a_tion
PJe]¥ £ YA of condition ¢.
.
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b ut LN
...[...so the abstract transformers follows by abstraction
fox == ¥ 2 @’ (f[x :=f]¥) abstract forward assignment transformer
bo[x := f]¥ = af(by[x :=7]¥) abstract backward assignment transformer
Plel¥ 2 o (p.[e]¥) abstract transformer for program test of condition

e The abstraction algorithm @j € FGxf,p)—A to
abstract properties in A may be non-trivial (e.g.
quantifiers elimination)

e A widening V is needed to ensure convergence of
the fixpoint iterates (or else ask the end-user)

4
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Reduced Product

CIE
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Cartesian product

® Definition of the Cartesian product:

Let (A;, T;), i € A, A finite, be abstract domains with
increasing concretization y; € A; 5 ‘Bf.o. Their Carte-
sian product is (A, B) where A = Xien Ay (PC Q) =
Niea(Pi €i @3) and 7 € A— B3 is Y(P) £ Nien vi( P).

33

Reduction
® Example:intervals x congruences
p(xe[-1,5]Ax=2mod4) = xe[2,2] Ax=2mod0
are equivalent
® Meaning-preserving reduction:

Let (A, C) be a poset which is an abstract domain with
concretization y € A - C where (C, <) is the concrete
domain. A meaning-preserving map is p € A — A such
that VP € A : y(p(P)) = y(P). The map is a reduction if
and only if it is reductive that is VP € A : p(P) C P. O

35

Reduced product

® Definition of the Reduced product:

Let (A;, C;), i € A, A finite, be abstract domains with in-
creasing concretization y; € A; - ‘Bio where A £ Kiep Ai
is their Cartesian product. Their reduced product is (ff /2,
) where (P 2 Q) = (7(ﬁ) = 7(@) and ¥ as well as C
are naturally extended to the equivalence classes [P]/=,
P € A of 2 by y(Pl/2) = J(P) and [P]/z € [0]/= £
AP’ € [P]/=: 30 €[0]/=: P E Q. O

® In practice, the reduced product may be complex to
compute but we can use approximations such as the
iterated pairwise reduction of the Cartesian product

o)
:‘“*“: AAAAAAA S expedition, Pl meeting, University of Maryland, College Park, MD, 04/28-29/201 34

Iterated reduction

® Definition of iterated reduction:

Let (A, C) be a poset which is an abstract domain with
concretizationy € A C where (C, C) is the concrete do-
main and p € A— A be a meaning-preserving reduction.

The iterates of the reduction are p° = AP+ P, p™*! =
p(pY) for successor ordinals and p* = |_|’3 10 for limit
ordinals.

The iterates are well-defined when the greatest lower
bounds [ | (glb) do exist in the poset (A, C). O
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Finite versus infinite iterated reduction

® Finite iterations of a meaning preserving reduction
are meaning preserving (and more precise)

e Infinite iterations, limits of
meaning-preserving
reduction, may not be
meaning-preserving
(although more precise). It is
when ¥ preserves glbs.

I @
- ©P.Cousot ‘f’
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Pairwise reduction (cont’d)

L .. . 7
Define the iterated pairwise reductions 8", 8", 3~ € (A,
C) - (A_: C), n>0 of the Cartesian product for

P= Oi,jeA, Pij
i#]
n . . . .
where O f; = fr, © ... ° fr, is the function composition
i=1
for some arbitrary permutation m of [1, n]. O

2
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Pairwise reduction

® Definition of pairwise reduction

Let (A;, T;) be abstract domains with increasing con-
cretization y; € A; > L into the concrete domain (L, <).

Fori,je A i+ j, letpij € (A,'XAJ', Eij> = <AiXAj, Eij>
be pairwise meaning-preserving reductions (so that V{x,
Y €A XA;:piiKx, y) 5 (x, y) and (y; X yj) © pij =
(v xy) ). )

Define the pairwise reductions p;; € (A, C) - (ff, C) of
the Cartesian product as
Bij(P) £ let (P}, P’y £ p;j((P;, P)) in Pli — P[j « P]

where ﬁ[i — x]; = xand ﬁ[i —x];= ﬁj wheni # j.

2
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. >t We define (f X 2)(x, ) = (f(x), 8()- o

2
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Iterated pairwise reduction

® The iterated pairwise reduction of the Cartesian
product is meaning preserving

If the limit p ' of the iterated reductions is well defined
then the reductions are such that VP € A : Vn € N, :
g BYEF" PYEBPYC P, i,jeA, i+ jand meaning-
preserving since p A(ﬁ), Oi j(ﬁ), Pe[P])-

If, moreover, y preserves greatest lower bounds then
g (P) e [Pl/= O

[
1




Iterated pairwise reduction

® |n general, the iterated pairwise reduction of the
Cartesian product is not as precise as the reduced
product

e Sufficient conditions do exist for their equivalence
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Nelson—Oppen
combination procedure

D
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Counter-example
o L = 9p(ab,c})
o A = 1{0,{a}, T} where T = {a, b, ¢}

o Ay =1{0,{a b}, T}
o A3 = {07 {a, C}’ T}
o (T, {a,b}, {a,c})/z = {a}, {a,b}, {a,c})

o O;(T, {a,b}, {a.ch)) = (T, {a, b}, {a,c})
for A = {1,2,3},i,j € Ai # j

g (T, {a,b}, {a,c})) = (T, {a,b}, {a,c}) isnot
a minimal element of [(T, {a, b}, {a,c})]/=

42 ©P.Cousot (?’ ‘

The Nelson-Oppen combination procedure

® Prove satisfiability in a combination of theories by
exchanging equalities and disequalities

® Example: ¢ 2 (x =aV x=b) A £(x) # f(a) A £(x) # £(b) 2

® Purify: introduce auxiliary variables to separate
alien terms and put in conjunctive form

¢ = 1 A ¢ where
pr=(x=aVvx=Db)Ay=aAz=b
@2 2 £(x) # £) A £(x) # £(2)

= 2>where a, b and f are in different theories y
o NSF CMACS expedition, Pl meeting, University of Maryland, College Park, MD, 04/28-29/201 | sot (T/’




The Nelson-Oppen combination procedure

¢ = @1 A ¢, where
pr=(x=aVvVx=b)Ay=aAz=b
@2 = £(x) # £() A £(x) # £(2)
® Reduce g(¢): each theory 7; determines E;; , a (dis-
junction) of conjunctions of variable (dis)equalities
implied by ¢; and propagate it in all other compo-
nants ¥;

Enp=(x=y)V(x=2)
E21é(x¢y)/\(x¢z)

® |terate § (¢) : until satisfiability is proved in each
theory or stabilization of the iterates
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The Nelson-Oppen
procedure is an iterated
pairwise reduced
product

8
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The Nelson-Oppen combination procedure

Under appropriate hypotheses (disjointness of the
theory signatures, stably-infiniteness/shininess,
convexity to avoid disjunctions, etc), the Nelson-
Oppen procedure:

® Terminates (finitely many possible (dis)equalities)
® [s sound (meaning-preserving)
® |s complete (always succeeds if formula is satisfiable)

Program static analysis/verification is undecidable so
requiring completeness is useless. Therefore the
hypotheses can be lifted, the procedure is then sound

zand incomplete. No change to SMT solvers is needed.

Observables in Abstract Interpretation

® (Relational) abstractions of values (vj,..,vs) of
program variables (xy,..,Xn) is often too imprecise.

Example : when analyzing quaternions (a,b,c,d) we
need to observe the evolution of aZ+b?+c2+d?
during execution to get a precise analysis of the
normalization

® An observable is specified as the value of a function f
of the values (vi,..,vn) of the program variables
(%1,...,%n) assigned to a fresh auxiliary variable %,

Xo == f(VI,...,Vn)

(with a precise abstraction of f)
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Purification = Observables in A.l.

® The purification phase consists in introducing new
observables

® The program can be purified by introducing auxiliary
assignments of pure sub-expressions so that forward/
backward transformers of purified formulae always
yield purified formulze

® Example (f and a,b are in different theories):

y = f(x) == fla+1) & f(x) == f(2*b)

becomes
z=a+1;t=2%b;y = f(x) == f(z) & f(x) = f(t)
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Static analysis combining
logical and algebraic
abstractions

D
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Reduction

® The transfer of a (disjunction of) conjunctions of
variable (dis-)equalities is a pairwise iterated
reduction

® This can be incomplete when the signatures are not
disjoint
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Reduced product of logical and algebraic domains

Logical theories Algebraic domains

7: 7; _____________ 7; Al Az _____________ Am
Qo] - [@n [B[B |~ [Pn
..... I |
p pal pla p

® When checking satisfiability of ®, A @, A .. A @, the

Nelson-Oppen procedure generates (dis)-equalities that
can be propagated by p;, to reduce the P, i=I,...m, or

® (P, A P, A .. A @,) can be propagated by p;, to
reduce the P, i=1,...,m

® The purification to theory 7; of y;(P;) can be propagated
to (; by p. in order to reduce it to ©; A yi(P) (in T;) &




Advantages Conclusion

® No need for completeness hypotheses on theories ® Convergence between logic-based proof-theoretic
deductive methods using SMT solvers/theorem
provers and algebraic methods using model-
checking/abstract interpretation for infinite-state
® No need for end-users to provide inductive systems

invariants (discovered by static analysis)®)

® Bidirectional reduction between logical and algebraic
abstraction

Garrett Birkhoff (1911-1996)
abstracted logic/set theory
into lattice theory

® Easy interaction with end-user (through logical
formulz)

® Easy introduction of new abstractions on either side

— Extensible expressive static analyzers / verifiers
1967 (1940). Lattice Theory, 3rd ed.

American Mathematical Society.

= () may need occasionally to be strengthened by the end-user
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Future work

® Still at a conceptual stage

omputational odeling and - nalysis for - omplex —ystems

® More experimental work on a prototype is needed
to validate the concept

The End,
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