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Problem

Verification of Stochastic Systems

= Uncertainties in
* the system environment,
* modeling a fault,
* biological signaling pathways,
= circuit fabrication (process variability)

= Transient property specification:
= “what is the probability that the system shuts down within 0.1 ms™?

" |f @ = "system shuts down within 0.1ms”

Prob(®) = ?




Equivalently

» A biased coin (Bernoulli random variable):
* Prob (Head)=p  Prob (Tail) = 1-p
" p IS unknown

= Question: What is p?

= A solution: flip the coin a number of times, collect the
outcomes, and use a statistical estimation technique.



Motivation

State Space Exploration infeasible for large systems
= Symbolic MC with OBDDs scales to 103 states

= Scalability depends on the structure of the system
Pros: Simulation is feasible for many more systems

= Often easier to simulate a complex system than to
build the transition relation for it

Pros: Easier to parallelize
Cons: Answers may be wrong
= But error probability can be bounded

Cons: Simulation is incomplete



Statistical Model Checking

Key Idea

= System behavior w.r.t. a (fixed) property @ can be
modeled by a Bernoulli random variable of parameter p:

» System satisfies @ with (unknown) probability p

= Question: What is p?

= Draw a sample of system simulations and use:

= Statistical estimation: returns “p in interval (a,b)” with high
probability



Bounded Linear Temporal Logic

Bounded Linear Temporal Logic (BLTL): Extension of LTL
with time bounds on temporal operators.

Let 0 = (Sg, 1), (S1s ty), - - . be an execution of the model
= along states s, Sq, - - .
= the system stays in state s, for time t,

= divergence of time: 2, t, diverges (i.e., non-zeno)

o'. Execution trace starting at state i.

A model for simulation traces (e.g. Stateflow/Simulink)



Semantics of BLTL

The semantics of BLTL for a trace o

o= ap Iff atomic proposition ap true in state s,

oKF P, v P, iff oX

oKF-@ iff o

| k =
— @, or o¥F @,

— @ does not hold

oFE @, ‘Ut @, iff there exists natural i such that

1) o @,
2) Tt St

3) foreach0<j<i, ov FE @,
“within time t, @, will be true and @, will hold until then”

In particular, F* @ =true U'®, G P =-F =@



Semantics of BLTL (cont’d)

= Simulation traces are finite: is o = @ well defined?

= Definition: The time bound of @:

" #@p)=0
= #(-~D) = #(P)

= #(PyV Dy) = max (#(Py), #(P,))
= #(P, U D,) =t + max (#(D,), #(D,))

= [ emma: “Bounded simulations suffice”

Let @ be a BLTL property, and k=0. For any two infinite traces p, o
such that pXand o* “equal up to time #(®)” we have

oK

— @

iff o =@




Bayesian Statistics

Three ingredients:

1. Prior distribution

= Models our initial (a priori) uncertainty/belief about
parameters (what is P(6)?)

2. Likelihood function

= Describes the distribution of data (e.g., a sequence of
heads/tails), given a specific parameter value

3. Bayes Theorem

» Revises uncertainty upon experimental data - compute
P(6 | data)



Sequential Bayesian Statistical MC

Suppose M satisfies ¢ with (unknown) probability p
* pis given by a random variable (defined on [0,1]) with density g
= g represents the prior belief that M satisfies qb

Generate independent and identically distributed (iid)
sample (simulation) traces.

x;: the it" sample trace O satisfies ¢
. x=1iff O3 F @

= x=0iff O3 = @

Then, x; will be a Bernoulli trial with conditional density
(likelihood function)

f(x;|u) = ux(1 — u)tx




* Prior g Is Beta of parameters a>0, >0
1

a—l(l L U)ﬁ—l

Vu e 0,1 g(u,a,3) = Bla ﬁ)u

1
B(a, 3) :/0 to L1 — )P tat

= F..()is the Beta distribution function (i.e., Prob(X < u))

Fom( = | gt.0.0) d



Bayesian Interval Estimation - |

Estimating the (unknown) probability p that “system = @”

Recall: system is modeled as a Bernoulli of parameter p

Bayes’ Theorem (for conditional iid Bernoulli samples)

[y |w)--- fan | u)g(u)
f() (1 [v) -+ f(@n | v)g(v) dv

flu|xy,...,2n) =

We thus have the posterior distribution

So we can use the mean of the posterior to estimate p

" mean is a posterior Bayes estimator for p (it minimizes the
integrated risk over the parameter space, under a quadratic l0ss)



Bayesian Interval Estimation - Il

By integrating the posterior we get Bayesian intervals for p
Fix a coverage %2 < c < 1. Any interval (t,, t;) such that
t1
flu|zy,...,z,) du = c
to
IS called a 100c percent Bayesian Interval Estimate of p
An optimal interval minimizes t,- t,: difficult in general

Our approach:
= fix a half-interval width &

= Continue sampling until the posterior probability of an interval of
width 28 containing the posterior mean exceeds coverage c



Bayesian Interval Estimation - Il

= Computing the posterior probability of an interval is easy

= Suppose n Bernoulli samples (with x<n successes) and
prior Beta(a,f3)

t1
P(to <p < ti|z1,...,z,) :/ flulzy,... zn) du
to

— ‘F(ac—I—oz,n—x—l—ﬁ) (tl) o F@"‘Oﬁn_w—'—ﬁ) (t()) ‘

= Efficient numerical implementations (Matlab, GSL, etc)



Bayesian Interval Estimation - IV
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Bayesian Interval Estimation - V

Require: BLTL property @, interval-width 6, coverage c,
prior beta parameters a,f3

n:=0 {number of traces drawn so far}
X:=0 {number of traces satisfying so far}
repeat

o := draw a sample trace of the system (iid)

n:=n+1

if oF @ then

X:=x+1
endif

mean = (x+a)/(n+a+p)

(te,t) = (mean-5, mean+d)

I := PosteriorProbability (t,,t;,n,x,a,B)
until (I > c)
return (t,,t;), mean



Bayesian Interval Estimation - VI

» Recall the algorithm outputs the interval (t,,t,)
= Define the null hypothesis

Theorem (Error bound). When the Bayesian estimation
algorithm (using coverage Y2< ¢ < 1) stops — we have
Prob (“accept H,” | H,) < (1/c -1)1,/(1-171,)

Prob (“reject H,” | Hy) < (1/c -1)1r,/(1-11)

1,4 IS the prior probability of H,

Zuliani, Platzer, Clarke. HSCC 2010




Example: Fuel Control System

The Stateflow/Simulink model
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Fuel Control System

= Ratio between air mass flow rate and fuel mass flow rate
= Stoichiometric ratio is 14.6

= Senses amount of oxygen in exhaust gas, pressure,
engine speed and throttle to compute correct fuel rate.

= Single sensor faults are compensated by switching to a higher
oxygen content mixture

= Multiple sensor faults force engine shutdown

= Probabillistic behavior because of random faults
* |nthe EGO (oxygen), pressure and speed sensors
» Faults modeled by three independent Poisson processes
= We did not change the speed or throttle inputs



Verification

We want to estimate the probability that
M, FaultRate = (-F° Gl(FuelFlowRate = 0))

“It is not the case that within 100 seconds,
FuelFlowRate is zero for 1 second”

We use various values of FaultRate for each of the
three sensors in the model

Uniform prior



Verification

= Half-width 6=.01
= Several values of coverage probability c
= Posterior mean: add/subtract o to get Bayesian interval

Interval coverage c

9 95 99 999

[3 7 8] 3603 3559 3558 3563
Fault [10 8 9]  .8534 8518 8528 8534
rates [20 10 20] .9764 9784 9840 9779

[30 30 30] 9913 9933 9956 9971



Verificatio

= Number of samples

n

= Comparison with Chernoff-Hoeffding bound
Pr(| X—p|=20)<exp(-2nd?)

where X = 1/n I, X. , E[X]=p

about 17hrs on 2.4GHz Pentium 4

Interval coverage c

9 95

3 7 8] 6,234 8,802

Fault [10 8 9] 3,381 4.844
rates [20 10 20] 592 786
[30 30 30] 113 148

Chernoff bound 11,513 14,979

.99 999
15,205 24,830
8,331 13,569
1,121 2,583

227 341
23,026 34,539




Example: OP Amplifier
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Process variablility: uncertainties
In the fabrication process



OP amp: BLTL Specifications

» Properties are measured directly from simulation traces

= Predicates over simulation traces

* e.g. Swing Range: Max(V,,) > 1.0V AND Min(V,,) < .2V

out out

» Using BLTL specifications
* |n most cases, can be translated directly from definitions
» e.g. Swing Range:
= Fl00sl(y < .2) AND FU0Omsl(y > 1.0)

= “within 100us V,, will eventually be greater than 1V and smaller
than .2V~

= 100us : end time of transient simulation
* Note: unit in bound is only for readability

out



OP amp: BLTL Specifications

Specifications BLTL Specifications

1 Input Offset Voltage <1mV Fl100us](\v/_ . = .6) AND
GL100KS)(V,, = .6) — (|Vip, = Vin-| < .001))

2 Output Swing Range .2Vtol1l.0V F[ooesly . < .2) AND F[100sl(yv > 1.0)

3 Slew Rate > 25 V/uSec

G1ooms]( ((V, > 1.0 AND V,, > .65) — FI0-032ssl(y_ < 2)) AND
(Vout <.2AND Vin = '55) - |:[0'032"|S](\/0ut = 1-0) )

=== More properties and experiments in our
ASP-DAC 2011 paper



Work In Progress: Rare events

= pis small (say 10)

= A99% (approximate) confidence interval of relative
accuracy 6 needs about

(1-p)/pd? samples
= Examples:

= p=10°and 6 = 107% (ie, 1% accuracy) we need
about 1013 samples!!

= Bayesian estimation requires about 6x10° samples
with p=10“4and 6 = 101



» The fundamental Importance Sampling identity
pr = E[I(X > 1))

:/I( > 1) f(x) da
f(il?)
/I(”" Vi
[(z = t)W(x) fu(x) do
EI(X = OW(X)]




Importance Sampling

= Estimate p=E[X>t]. Asample X,,... X lid as X

kt

K
1
N T I1(X; >t) = —. X; ~
Pt 7% ;_1 ( ) i’ /

= Define a biasing density f.

K
o1 Z

where W(x) = f(x)/f.(x) Is the likelihood ratio



Importance Sampling: Toy Example

= Suppose X is Poisson with parameter A
= Prob(X, = k) = (L/KN(At)k exp(-At)

= Then Prob(X,;>=1) =1 - exp(-At)

= Sayt=100and A=1/3x 101
= p,=Prob(X,>=1)=3.333 x 10-1°

= Rare event!



Importance Sampling: Toy Example

Define the biasing density a Poisson with parameter y
much larger than A.

The likelihood ratio is

W(K) = (A)* (Lt)™* exp(-ut) exp(At) = (Alu)* exp(t(u-A))
Draw N samples k; ...k from the biasing density
Importance sampling estimate is

= e, = 1/N % I(k; >= 1) W(k)



Importance Sampling: Toy Example

With N = 100 samples and y = 1/90 we get an estimate
e, = 3.2808 x 1019

Recall the “unbiased” system has A = 1/3 x 10-1

The (unknown) true probability is about 3.333 x 1010

Try standard MC estimation ...



Work In Progress

= Tackling the incompleteness of simulation

» Theorem (Undecidability of image computation)

Bad states

Platzer and Clarke, HSCC 2007

Indistinguishable




Work In Progress

= Bad news, but ...

» Theorem. (Platzer and Clarke, 07)
If Prob(]|@’||,, > b) — 0 when b — o, then image
computation can be performed with arbitrarily high
probabllity by evaluating ¢ on sufficiently dense grid.

= |dea:

» given a simulation trace, “compute the probability that we
have missed a (bad) state between two sample points”

= Bound the overall error probability a priori (combining
bounds on ||¢’||.. and the statistical test/estimation)



Thank You!



