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Statistical Model Checking



Problem

Verification of Stochastic Systems

 Uncertainties in 

 the system environment, 

 modeling a fault, 

 biological signaling pathways,

 circuit fabrication (process variability)

 Transient property specification:

 “what is the probability that the system shuts down within 0.1 ms”?

 If Ф = “system shuts down within 0.1ms”

Prob(Ф) = ?



Equivalently

 A biased coin (Bernoulli random variable):

 Prob (Head) = p Prob (Tail) = 1-p

 p is unknown

 Question: What is p?

 A solution: flip the coin a number of times, collect the 

outcomes, and use a statistical estimation technique.



Motivation

 State Space Exploration infeasible for large systems

 Symbolic MC with OBDDs scales to 10300 states

 Scalability depends on the structure of the system

 Pros: Simulation is feasible for many more systems

 Often easier to simulate a complex system than to 

build the transition relation for it

 Pros: Easier to parallelize

 Cons: Answers may be wrong 

 But error probability can be bounded

 Cons: Simulation is incomplete



Key idea

 System behavior w.r.t. a (fixed) property Ф can be 

modeled by a Bernoulli random variable of parameter p:

 System satisfies Ф with (unknown) probability p

 Question: What is p?

 Draw a sample of system simulations and use:

 Statistical estimation: returns “p in interval (a,b)” with high 

probability

Statistical Model Checking



Bounded Linear Temporal Logic

 Bounded Linear Temporal Logic (BLTL): Extension of LTL 

with time bounds on temporal operators.

 Let σ = (s0, t0), (s1, t1), . . . be an execution of the model

 along states s0, s1, . . .

 the system stays in state si for time ti

 divergence of time: Σi ti diverges (i.e., non-zeno)

 σi: Execution trace starting at state i.

 A model for simulation traces (e.g. Stateflow/Simulink)



Semantics of BLTL

The semantics of BLTL for a trace σk:

 σk ap  iff atomic proposition ap true in state sk

 σk Φ1 v Φ2 iff  σk Φ1 or σk Φ2

 σk ¬Φ iff  σk Φ does not hold

 σk Φ1 Ut Φ2 iff  there exists natural i such that

1) σk+i Φ2 

2) Σj<i tk+j ≤ t

3) for each 0 ≤ j < i, σk+j Φ1

“within time t, Φ2 will be true and Φ1 will hold until then”

 In particular, Ft Φ = true Ut Φ, Gt Φ = ¬Ft ¬Φ



 Simulation traces are finite: is σ╞═ Φ well defined?

 Definition: The time bound of Φ:

 #(ap) = 0

 #(¬Φ) = #(Φ)

 #(Φ1 v Φ2) = max (#(Φ1), #(Φ2))

 #(Φ1 Ut Φ2) = t + max (#(Φ1), #(Φ2))

 Lemma: “Bounded simulations suffice”

Let Ф be a BLTL property, and k≥0. For any two infinite traces ρ, σ

such that ρk and σk “equal up to time #(Ф)” we have

ρk ╞═ Φ iff σk ╞═ Φ

Semantics of BLTL (cont’d)



Bayesian Statistics

Three ingredients:

1. Prior distribution

 Models our initial (a priori) uncertainty/belief about 

parameters (what is P(θ)?)

2. Likelihood function

 Describes the distribution of data (e.g., a sequence of 

heads/tails), given a specific parameter value

3. Bayes Theorem

 Revises uncertainty upon experimental data - compute 

P(θ | data) 



Sequential Bayesian Statistical MC

 Suppose      satisfies     with (unknown) probability p

 p is given by a random variable (defined on [0,1]) with density g

 g represents the prior belief that       satisfies    

 Generate independent and identically distributed (iid) 

sample (simulation) traces.

 xi: the ith sample trace    satisfies    

 xi = 1 iff 

 xi = 0 iff

 Then, xi will be a Bernoulli trial with conditional density 

(likelihood function)

f(xi|u) = uxi(1 − u)1-xi



 Prior g is Beta of parameters α>0, β>0

 F(∙,∙)(∙) is the Beta distribution function (i.e., Prob(X ≤ u))

Beta Prior



Bayesian Interval Estimation - I

 Estimating the (unknown) probability p that “system╞═ Ф”

 Recall: system is modeled as a Bernoulli of parameter p

 Bayes’ Theorem (for conditional iid Bernoulli samples)

 We thus have the posterior distribution

 So we can use the mean of the posterior to estimate p

 mean is a posterior Bayes estimator for p (it minimizes the 

integrated risk over the parameter space, under a quadratic loss)



 By integrating the posterior we get Bayesian intervals for p

 Fix a coverage ½ < c < 1. Any interval (t0, t1) such that

is called a 100c percent Bayesian Interval Estimate of p

 An optimal interval minimizes t1- t0: difficult in general

 Our approach: 

 fix a half-interval width δ

 Continue sampling until the posterior probability of an interval of 

width 2δ containing the posterior mean exceeds coverage c

Bayesian Interval Estimation - II



 Computing the posterior probability of an interval is easy

 Suppose n Bernoulli samples (with x≤n successes) and 

prior Beta(α,β)

 Efficient numerical implementations (Matlab, GSL, etc)

Bayesian Interval Estimation - III
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Bayesian Interval Estimation - IV
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prior is beta(α=4,β=5) 

posterior density after 1000 samples and 

900 “successes”  is beta(α=904,β=105)

posterior mean = 0.8959

width 2δ



Require: BLTL property Φ, interval-width δ, coverage c, 

prior beta parameters α,β

n := 0 {number of traces drawn so far}

x := 0 {number of traces satisfying  so far}

repeat

σ := draw a sample trace of the system (iid)

n := n + 1

if  σ Φ then

x := x + 1

endif

mean = (x+α)/(n+α+β)

(t0,t1) = (mean-δ, mean+δ)
I := PosteriorProbability (t0,t1,n,x,α,β)

until (I > c)

return (t0,t1), mean

Bayesian Interval Estimation - V



 Recall the algorithm outputs the interval (t0,t1)

 Define the null hypothesis

H0: t0 < p < t1

Theorem (Error bound). When the Bayesian estimation 

algorithm (using coverage ½< c < 1) stops – we have

Prob (“accept H0” | H1) ≤  (1/c -1)π0/(1-π0)

Prob (“reject H0” | H0)  ≤ (1/c -1)π0/(1-π0)

π0 is the prior probability of H0

Bayesian Interval Estimation - VI

Zuliani, Platzer, Clarke. HSCC 2010



Example: Fuel Control System

The Stateflow/Simulink model



Fuel Control System

 Ratio between air mass flow rate and fuel mass flow rate

 Stoichiometric ratio is 14.6

 Senses amount of oxygen in exhaust gas, pressure, 

engine speed and throttle to compute correct fuel rate.

 Single sensor faults are compensated by switching to a higher 

oxygen content mixture

 Multiple sensor faults force engine shutdown

 Probabilistic behavior because of random faults

 In the EGO (oxygen), pressure and speed sensors

 Faults modeled by three independent Poisson processes

 We did not change the speed or throttle inputs

07/16/09



Verification

 We want to estimate the probability that 

M, FaultRate ╞═ (¬F100 G1(FuelFlowRate = 0))

 “It is not the case that within 100 seconds, 

FuelFlowRate is zero for 1 second”

 We use various values of FaultRate for each of the 

three sensors in the model

 Uniform prior
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Interval coverage c

.9 .95 .99 .999

Fault 

rates

[3  7  8] .3603 .3559 .3558 .3563

[10  8  9] .8534 .8518 .8528 .8534

[20 10  20] .9764 .9784 .9840 .9779

[30  30  30] .9913 .9933 .9956 .9971

 Half-width δ=.01

 Several values of coverage probability c

 Posterior mean: add/subtract δ to get Bayesian interval

Verification



Interval coverage c

.9 .95 .99 .999

Fault 

rates

[3  7  8] 6,234 8,802 15,205 24,830

[10  8  9] 3,381 4,844 8,331 13,569

[20 10  20] 592 786 1,121 2,583

[30  30  30] 113 148 227 341

Chernoff bound 11,513 14,979 23,026 34,539

 Number of samples 

 Comparison with Chernoff-Hoeffding bound

Pr (| X – p | ≥ δ) ≤ exp(-2nδ2)

where X = 1/n Σi Xi , E[Xi]=p

Verification

about 17hrs on 2.4GHz Pentium 4



Example: OP Amplifier

Process variability: uncertainties 

in the fabrication process



OP amp: BLTL Specifications

 Properties are measured directly from simulation traces

 Predicates over simulation traces

 e.g. Swing Range: Max(Vout) > 1.0V AND Min(Vout) < .2V

 Using BLTL specifications

 In most cases, can be translated directly from definitions

 e.g. Swing Range: 

 F[100μs](Vout < .2) AND F[100μs](Vout > 1.0)

 “within 100μs Vout will eventually be greater than 1V and smaller 

than .2V”

 100μs : end time of transient simulation

 Note: unit in bound is only for readability



Specifications BLTL Specifications

1 Input Offset Voltage < 1 mV F[100μs](Vout = .6) AND

G[100μs]((Vout = .6) → (|Vin+ − Vin−| < .001))

2 Output Swing Range .2 V to 1.0 V F[100μs](Vout < .2) AND F[100μs](Vout > 1.0)

3 Slew Rate > 25 V/μSec

G[100μs]( ((Vout > 1.0 AND Vin > .65) → F[0.032μs](Vout < .2)) AND 

(Vout < .2 AND Vin < .55) → F[0.032μs](Vout < 1.0) )

More properties and experiments in our 

ASP-DAC 2011 paper

OP amp: BLTL Specifications



 p is small (say 10-9)

 A 99% (approximate) confidence interval of relative 

accuracy δ needs about

(1-p)/pδ2 samples

 Examples: 

 p = 10-9 and δ = 10-2 (ie, 1% accuracy) we need 

about 1013 samples!!

 Bayesian estimation requires about 6x106 samples 

with p=10-4 and δ = 10-1

Work in Progress: Rare events



 The fundamental Importance Sampling identity

Importance Sampling



 Estimate pt=E[X>t]. A sample X1,… XK iid as X

 Define a biasing density f*

where W(x) = f(x)/f*(x) is the likelihood ratio

Importance Sampling
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Importance Sampling: Toy Example

 Suppose X is Poisson with parameter λ

 Prob(Xt = k) = (1/k!)(λt)k exp(-λt)

 Then Prob(Xt >= 1) = 1 - exp(-λt)

 Say t = 100 and λ = 1/3 x 10-11

 pt = Prob(Xt >= 1) ≈ 3.333 x 10-10

 Rare event!
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Importance Sampling: Toy Example

 Define the biasing density a Poisson with parameter μ

much larger than λ.

 The likelihood ratio is

W(k) = (λt)k (μt)-k exp(-μt) exp(λt) = (λ/μ)k exp(t(μ-λ))

 Draw N samples k1…kN from the biasing density

 Importance sampling estimate is 

 et = 1/N Σi I(ki >= 1) W(ki)
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Importance Sampling: Toy Example

 With N = 100 samples and μ = 1/90 we get an estimate

et = 3.2808 x 10-10

 Recall the “unbiased” system has λ = 1/3 x 10-11

 The (unknown) true probability is about 3.333 x 10-10

 Try standard MC estimation …



 Tackling the incompleteness of simulation

 Theorem (Undecidability of image computation) 

Work In Progress

Platzer and Clarke, HSCC 2007

Bad states

Indistinguishable



 Bad news, but …

 Theorem. (Platzer and Clarke, 07)                                     

If Prob(||φ’|| > b) → 0 when b → , then image 

computation can be performed with arbitrarily high 

probability by evaluating φ on sufficiently dense grid.

 Idea: 

 given a simulation trace, “compute the probability that we 

have missed a (bad) state between two sample points”

 Bound the overall error probability a priori (combining 

bounds on ||φ’|| and the statistical test/estimation)

Work In Progress



The End

Thank You!


