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Motivation

m Developing complex cyber-physical systems
requires analyses of multiple models using
different formalisms and tools.

m How can we:
+guarantee models are consistent with each other?

+infer system-level properties from heterogeneous
analyses of heterogeneous models?



Tools and Formalisms Used in
Embedded Control System Development
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Tool Formalism Type of Verification Cyber | Physical
Simulink’ ODEs simulation +
Simulink” difference eqns. simulation +

Stateflow state charts simulation +

Modelica DAEs/ODEs simulation +
Simscape DAEs/ODEs simulation +
TrueTime timed events simulation ++

SMV finite state machines model checking ++

PHAVer linear hybrid automata reachability analysis + +
KeYmaera hybrid programs theorem proving + +
LTSA finite state processes model checking ++

LabView signal flow simulation +

PRISM Markov chains probabilistic model checking +

' Basic continuous-time system blockset.

“ Basic discrete-time system blockset.
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Multiple Views of a CPS
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Is there a unifying representation?

5
—l

e

=

e e )

ol M _GHT
- — o
P

Control View ( o Physical View

RS232

7.¢/

1o kb PCI104
Pentium M U

} 802.11g+
e T Firewire mé::"“r::m 480 Mbp sump:g

| 520 Mops RS232 R

[ —fe= 7 e
0dkbps : ol Verdex XLGP PXA270 CF WiFi
=T | 4| 80211
= - o TUART 32V Flash o0 Mbes | %5 Mbps
e, D 1‘
-

1 115 kb
™
-...-.-5- Atmegal 28

L‘é I2C Low level control PPM

-} | | A t 100 Hz
Anaiog
=
ESC & Motors
Timing %{ Phoenix-25, Axi 2208/26

Hardware View

Software View

12



Carnegie Mellon

Multi-Domain Modeling/Analysis
Approach 1: Universal Modeling Language

Goal: Create a language that encompasses
everything that needs to be modeled

E.g.:
+ UML/SysML (actually multiple views)
+ MATLAB Simulink+Toolboxes
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Universal Model Vision
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Problems with Universal Models

m Comprehensive models representing
everything are intractable

m Separation of concerns supports multi-
disciplinary development

m Analysis tools operate on specific types of
models, not universal models
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Multi-Domain Modeling/Analysis
Approach 2: Model Translation

Goal: Automatically translate models from one
formalism into another formalism

E.g.:

+ ARIES (Automatic Integration of Reusable Embedded Software)
http://kabru.eecs.umich.edu/bin/view/Main/AIRES

# HSIF (Hybrid Systems Interchange Format)
http://ptolemy.eecs.berkeley.edu/projects/mobies/
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Model Translation Vision
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Problems with Model Translation

m Tool-specific translation isn’t scalable

m Universal translation requires a universal
modeling language (Approach 1)

m Modeling languages and tools evolve
continually
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Multi-Domain Modeling/Analysis
Proposal: Architectural Approach

Goal: Unify heterogeneous models through
light-weight representations of their
structure and semantics using architecture
description languages (ADLs).

Current ADLs
+ UML/SysML
+AADL
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Architectural Approach
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Proposal: CPS Architectural Style

m A unifying framework to:
# Detect structural inconsistencies between models

+ Detect semantic inconsistencies in modeling
assumptions

+ Infer system-level properties

+ Evaluate design trade-offs across cyber-physical
boundary
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Models as Architectural Views
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Architecture Tool: AcmeStudio
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m Extensible framework for architecture design and analysis

m The CPS style has been created as a stand-alone
AcmeStudio family

m Analysis tools will be developed as AcmeStudio plugins
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Heterogeneous Verification

m Annotate architectures with
+ system-level specifications/requirements
¢#assumptions underlying models/views

#guarantees provided by model-based analyses

m Develop algorithms for

#consistency analysis for specifications &
assumptions

+integration of model-based verification results
#coverage via heterogeneous verification activities
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Building on Previous work

m Model-based design

#|everage existing models, tools, methods at the
system level (rather than replace them)

m Architecture

+build on extensive research in ADLs for cyber
systems

m Formal methods

+develop rigorous (sound, complete) logic for
integrating knowledge from heterogeneous sources
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Abstraction and Refinement

verification Model Architecture verification Model Architecture
- T L ¢+ h o
| [I [ . g
. L]
—" r r H
| ’ | | [ 1
| ] |
Base CP5 Architecture Base -EP.J, Arch II.'EEJI ]'I l[
[—————— - I T=———=—" ———f——1 P ] e et
A | L] | ..l || ) | 1 - ||I ||J | ||| |
| Sl | S [ ] S— T__' | =y i [
[————t ———— | __a_ = _ I e | J L L I
— —_—  — | [ AN el 1mamiL !
:_ l ._ H 1 II.._I'._ ._rl |
= g i L N |
1 . : | | 1'1. H I
L S e S == L e =——Il — _

* How are verification assumptions/results related to
each other?

 What can be inferred about system-level
requirements?
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GOAL: System-Level Logic for

Heterogeneous Verification
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Table 2: Range of possible choices for the logic of properties at different architectural levels

Logic Example Suitable Level

variable bound expressions ace[2,5] high-level connectors
(non)linear real arithmetic 2dazx—y high-level connectors
propositional LTL Ll(red — O green) high-level cooperation
real-time LTL —0%red A O(red — O brake) medium-level cooperation
arithmetic LTL O(gap < 50 — ¢%a < 0) local component properties
differential dynamic logic [.‘:a:m"u".'i]{v2 < 10— {car)a=0) detailed component dynamics
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GOALI: Collaboration with
Toyota Technical Center-Ann Arbor

m Toyota Project Management
+Ken Butts, Power Train Control Dept.

+|ong-time champion of formal methods for
automotive control system development

m Target application: CICAS

#cooperative intersection collision avoidance
system

#public-domain models from government project
+internal Toyota research on active braking
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CICAS Scenario
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CICAS Scenario
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CICAS Scenario
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CICAS Scenario
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CICAS Scenario
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Automotive Safety: Social Impact

At the inquest into the world’s first road traffic death in
1896, the coroner was reported to have said “this must
never happen again”. More than a century later, 1.2 million
people are killed on roads every year and up to 50 million

more are injured.
www.who.int/features/2004/road_safety/en/

One in every 50 deaths worldwide is associated with road
accidents ... traffic crashes are second only to childhood
infections and AIDS as a killer of people between the ages
of 5 and 30. ... By 2020, traffic deaths are expected to
increase by 80 percent as hundreds of millions of cars are
added to the roads.
www.dui.com/dui-library/fatalities-accidents/statistics/traffic-deaths
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CICAS-Intersection Collisions

Intersection collisions account for 21.5% of traffic

fatalities and 44.8% of traffic injuries in the US.
http://safety.fhwa.dot.gov/intersection/resources/fhwasal0005/brief 2.cfm

m Technologies being developed
¢+driver situational awareness
me.g., advanced warning on traffic light states
#infrastructure countermeasures
m e.g., adaptive traffic light timing
#+vehicle countermeasures

me.g., active breaking
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Opportunltles for CMACS
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CMACS Opportunities

“We are also planning a significant effort in
Open-Source Tool Development and in the
formation of a Testbed Repository. ... [this]
will lead to new, open-source verification
tools, as well as new models of ... embedded
systems, which will be disseminated for
public use.”
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Next Steps for CMACS-Toyota

m Matthias Althoff will work with Toyota to
develop relevant models

m Matthias Althoff and Sarah Loos will apply
some of their work on verifying properties
of vehicle control policies

m We'll help anyone interested to develop
examples
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Auto/Aero Panel Discussion
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A Cyber-Physical System (CPS):
STARMAC Quadrotor*
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*http://hybrid.eecs.berkeley.edu/starmac/ 40
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Multiple Views of a CPS
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Multiple Views of a CPS
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Multiple Views of a CPS

Physical View

Software View
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Multiple Views of a CPS
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Project Plans

m Research heterogeneous verification
+ architectural concepts and tools
+ methods for multi-tool verification (e.g., assume-guarantee)

+ system-level logic

m Collaboration with Toyota
+ develop case studies
+ tool development

+ regular meetings & exchanges

m Education & Outreach
+ course modules on cyber-physical systems
# senior/MS course on CPS architectures

#+ year three industrial seminars

Carnegie Mellon
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