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How did I get interested in this topic?



• Hybrid Systems Computation and Control:

- convergence between control and automata theory.

• Hybrid Automata: an outcome of this convergence  

- modeling formalism for systems exhibiting both 

discrete and continuous behavior,

- successfully used to model and analyze embedded

and biological systems. 

Convergence of Theories



Lack of Common Foundation for HA

• Mode dynamics:

- Linear system (LS)

• Mode switching:

- Finite automaton (FA)

• Different techniques:

- LS reduction

- FA minimization

Stimulated

 
U

Vs v


U

Vv


E

Vv

0 /
R

V tv

  

R

x Ax Bu

v

v V

Cx









/ di ts 

v
o

lt
a
g

e
(m

v
)

time(ms)

• LS & FA taught separately:  No common foundation!



• Finite automata can be conveniently regarded as 

time invariant linear systems over semimodules:

- linear systems techniques generalize to automata

• Examples of such techniques include:

- linear transformations of automata,

- minimization and determinization of automata as 

observability and reachability reductions 

- Z-transform of automata to compute associated 

regular expression through Gaussian elimination. 

Main Conjecture



Minimal DFA are Not Minimal NFA
(Arnold, Dicky and Nivat’s Example)
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Minimal NFA: How are they Related?
(Arnold, Dicky and Nivat’s Example)

L = ab+ac + ba+bc + ca+cb

No homomorphism of either automaton onto the other.
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Minimal NFA: How are they Related?
(Arnold, Dicky and Nivat’s Example)

Carrez’s solution: Take both in a terminal NFA.

Is this the best one can do? 

No! One can use use linear (similarity) transformations.



Observability Reduction HSCC’09
(Arnold, Dicky and Nivat’s Example)
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Reachability Reduction HSCC’09
(Arnold, Dicky and Nivat’s Example)
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Observability and minimization



Finite Automata as Linear Systems 

  

 Consider a finite automaton M = (X,,,S,F) with:

    - finite set of states X, finite input alphabet ,

    - transition relation   X    X,

    - starting and final sets of states S,F  X 
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 Consider a finite automaton M = (X,,,S,F) with:

    - finite set of states X, finite input alphabet ,

    - transition relation   X    X,

    - starting and final sets of states S,F  X 

 Let X denote row and column indices. Then:

    -  defines a matrix A,

    - S and F define corresponding vectors



Finite Automata as Linear Systems 

 

 Now define the linear system L
M

= [S,A,C]:
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Finite Automata as Linear Systems 
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Semimodule of Languages 

  

 (
*
) is an idempotent semiring (quantale):

     - ((
*
),+,0) is a commutative idempotent monoid (union),

     - ((
*
),,1) is a monoid (concatenation),

     - multiplication distributes over addition,

     - 0 is an annihilator: 0  a = 0

 ((
*
))

n  is a semimodule over scalars in (
*
):

     - r(x+y) = rx + ry,   (r+s)x = rx + sx,   (rs)x   = r(sx),         

     - 1x       = x,                 0x  = 0  

 Note: No additive and multiplicative inverses!
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Observability 

  

 Let L = [S,A,C]. Observe its output upto n-1:

       [y(0) y(1) ... y(n-1)] = x
0

t
[C AC ... A

n-1
C] = x

0

t
O     (1)

 If L operates on a vector space:

    - L is observable if: x
0
 is uniquely determined by (1),

    - Observability matrix O: has rank n,

    - n-outputs suffice: A
n
C = s

1
A
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2
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 If L operates on a semimodule:

    - L is observable if: x
0
 is uniquely determined by (1)



Observability 

  

 Let L = [S,A,C]. Observe its output upto n-1:

       [y(0) y(1) ... y(n-1)] = x
0

t
[C AC ... A

n-1
C] = x

0

t
O     (1)

 If L operates on a vector space:

    - L is observable if: x
0
 is uniquely determined by (1),

    - Observability matrix O: has rank n,

    - n-outputs suffice: A
n
C = s

1
A

n-1
C + s

2
A

n-2
C + ... + s

n
C

           (Cayley-Hamilton Theorem)

 If L operates on a semimodule:

    - L is observable if: x
0
 is uniquely determined by (1)



Observability 

  

 Let L = [S,A,C]. Observe the output upto n-1:

       [y(0) y(1) ... y(n-1)] = x
0

t
[C AC ... A

n-1
C] = x

0

t
O     (1)

 If L operates on a vector space:

    - L is observable if: x
0
 is uniquely determined by (1),

    - Observability matrix O: has rank n,

    - n-outputs suffice: A
n
C = s

1
A

n-1
C + s

2
A

n-2
C + ... + s

n
C

 If L operates on a semimodule:

    - L is observable if: x
0
 is uniquely determined by (1)



The Cayley-Hamilton Theorem
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 Permutations are bijections of {1,...,n}:

     - Example:   = {(1,2),(2,3),(3,4),(4,1),(5,7),(6,6),(7,5)}

 The graph G() of a permutation :         

     - G() decomposes into: elementary cycles,

 The sign of a permutation: 

     - Pos/Neg: even/odd number of even length cycles,

     - P
n


/ P

n


:    all positive/negative permutations.
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Eigenvalues in Vector Spaces 

  

 The eigenvalues of a square matrix A:

     - Eigenvector equation: x
t
A = x

t
s

 The characteristic equation of A:

     - The characteristic polynomial: cp
A
(s) = |sI-A|

     - The characteristic equation:     cp
A
(s) = 0

 The determinant of A:

     - The determinant: |A| = (A)
Pn

 - (A)
Pn

 ,

     - Permutation application: (A) = A(i,(i))
i1

n
     

eigenvalueeigenvector
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 A satisfies its characteristic equation: cp
A
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CHT in Commutative Semirings
(Straubing’s Proof) 

 

 Lift original semiring to the semiring of paths:

     - Matrix A is lifted to a matrix G
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  = {(1,2),(2,1)}               


 = 
(1,2)(2,1) 0 0

0 (2,1)(1,2) 0

0 0 0















 



  

 Lift original semiring to the semiring of paths:

     - Matrix A: order in paths   important

     - Permutation cycles:  rotations are distinct       

 Prove CHT in the semiring of paths:

     - Products  

Gn-| |

:  cycles to be properly inserted 

 

CHT in Idempotent Semirings 



  

 Lift original semiring to the semiring of paths:

     - Matrix A: order in paths   important

     - Permutation cycles:  rotations are distinct       

 Prove CHT in the semiring of paths:

     - Products  

Gn-| |

:  cycles to be properly inserted 

 

  



  Gn-| |  = 


Gn-| |  + G


Gn-| |-1 +...+ Gn-| |


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 Lift original semiring to the semiring of paths:

     - Matrix A: order in paths   important

     - Permutation cycles:  rotations are distinct       

 Prove CHT in the semiring of paths:

     - Products  

Gn-||

:  cycles to be properly inserted

 Port results back to the original semiring: 

     - Apply products:  

Gn-||

(A)  

 

CHT in Idempotent Semirings 



  

 Theorem:       Gn  =  



Pq


n


q1

n

  G
A

n-||

   Proof:

    LHS   RHS:  Let     LHS 

      

- Pidgeon-hole:   has at least one cycle 


 in s

- Structural: 


 is a simple cycle of length k

- Remove 

 in : [s/


] is in G

n-||  

- Shuffle-product: 

  Gn-||  reinserts 



     RHS   LHS:  Let     RHS

       
- No wrong path: The shuffle is sound

- Idempotence: Takes care of multiple copies
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 Define: 

(i, i) = 

 if  

(i, i) = 0

0 if   

(i, i) = 







 Theorem:  classic CHT can be derived by using:

         -   Gn-||   = 

  G



n-||  +  

  G



n-||

         - application of CHT to G


n-||  and G


n-||

 Matrix CHT:  can be regarded as a constructive 

       version of the pumping lemma.      
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Finite Automata as Linear Systems 

  

 Now define the linear system L
M

= [S,A,C]:

     
x

t
(n+1) = x

t (n)A, x
0

= S()

y
t (n) = x

t (n)C,  C = F()

 Example: consider following automaton:

x3 x2x1

a

ab

b

0

0 1 0 1

A(a) = 0 1 0 ,   x ( ) = 0

0 0 0 0

0 0 1 0

A(b) = 0 0 0 ,   C( )  = 1

0 0 1 1

   
   
   
   

   
   
   
   

L1

 A = A(a)a + A(b)b



Observability 

t n-1 t

0 0

0

       [y(0) y(1) ... y(n-1)] = x C AC ... A C] = x     (1)

 Let L = [S,A,C] be an n-state automaton. It's output:

[ O

  L is observable if x  is uniquely determin

 Exampl t

ed by (

e:  obserh v

1).

le abi i





n

1

2

3

1

b bb b b
a aε a a a

x

A C

0 1 1 1 0 0 1  O =
1 1 0 1 0 0 0

1 0 1 0

 
x

x 0 0 1

ty matrix of O L  is:

x3 x2x1

a

ab

b

L1


