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How did | get interested in this topic?



Convergence of Theories

* Hybrid Systems Computation and Control:

- convergence between control and automata theory.

 Hybrid Automata: an outcome of this convergence

- modeling formalism for systems exhibiting both
discrete and continuous behavior,

- successfully used to model and analyze embedded
and biological systems.
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* LS & FA taught separately: No common foundation!



Main Conjecture

* Finite automata can be conveniently regarded as
time invariant linear systems over semimodules:

- linear systems techniques generalize to automata

 Examples of such techniques include:
- linear transformations of automata,

- minimization and determinization of automata as
observability and reachability reductions

- Z-transform of automata to compute associated
regular expression through Gaussian elimination.



Minimal DFA are Not Minimal NFA
(Arnold, Dicky and Nivat’s Example)

Q@AC .

L =a (b* + c?*)



Minimal NFA: How are they Related?
(Arnold, Dicky and Nivat’s Example)

L = ab+ac + ba+bc + ca+cb

No homomorphism of either automaton onto the other.



Minimal NFA: How are they Related?
(Arnold, Dicky and Nivat’s Example)

Carrez’s solution: Take both in a terminal NFA.

Is this the best one can do?
No! One can use use linear (similarity) transformations.



Observability Reduction HSCC’09
(Arnold, Dicky and Nivat’s Example)

X, X, X, X, X, _
x,1 000 0 A=[AT], (T7AT)
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Reachability Reduction HSCC’09
(Arnold, Dicky and Nivat’s Example)

a
C
At =[AT]. (TTA'T)
Xq =X T
C =[C], (T7'C)
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With the Web, people worldwide
can work on distributed tasks.
But getting reliable results
requires algorithms that specify
workflow between people, not
transistors.
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First improvement of fundamental algorithm in 10
years

The max-flow problem, which is ubiquitous in network analysis,
scheduling, and logistics, can now be solved more efficiently than
ever.

Larry Hardesty, MIT News Office
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Paper: "Electrical Flows,
Laplacian Systems, and
Faster Approximation of
Maximum Flow in
Undirected Graphs"
(PDF)

The maximum-flow problem,
or max flow, is one of the
most basic problems in
computer science: First
solved during preparations for
the Berlin airlift, it's a
component of many logistical
problems and a staple of
introductory courses on
algorithms. For decades it
was a prominent research
subject, with new algorithms that solved it more and more efficiently coming out once or algorithms
twice a year. But as the problem became better understood, the pace of innovation slowed.
Now, however, MIT researchers, together with colleagues at Yale and the University of
Southern California, have demonstrated the first improvement of the max-flow algorithm in
10 years.
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In the branch of mathematics known as linear algebra, a row of a matrix can also be
interpreted as a mathematical equation, and the tools of linear algebra enable the
simultaneous solution of all the equations embodied by all of a matrix’s rows. By
repeatedly modifying the numbers in the matrix and re-solving the equations, the
researchers effectively evaluate the whole graph at once. This approach, which Kelner will
describe at a talk at MIT's Stata Center on Sept. 28, turns out to be more efficient than
trying out paths one by one.
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The immediate practicality of the algorithm, however, is not what impresses John
Hopcroft, the IBM Professor of Engineering and Applied Mathematics at Cornell and a
recipient of the Turing Prize, the highest award in computer science. “My guess is that this
particular framework is going to be applicable to a wide range of other problems,” Hopcroft
1 says. “It's a fundamentally new technigue. When there’s a breakthrough of that nature,
usually, then, a subdiscipline forms, and in four or five years, a number of results come [
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Observability and minimization



Finite Automata as Linear Systems

« Consider a finite automaton M = (X,%,5,5,F) with:
- finite set of states X, finite input alphabet X,
- transition relation 6 < X x X x X,

- starting and final sets of states S,F — X



Finite Automata as Linear Systems

« Consider a finite automaton M = (X,%,6,S,F) with:
- finite set of states X, finite input alphabet X,
- transition relation 8 ¢ X x X x X,

- starting and final sets of states S,F < X

e Let X denote row and column indices. Then:
- 0 defines a matrix A,

- S and F define corresponding vectors



Finite Automata as Linear Systems

« Now define the linear system L = [S,A,C]:

x'(n+1) = x'(N)A, x. = S

0

y'(n) = x@MC, C =F



Finite Automata as Linear Systems

« Now define the linear system L = [S,A,C]:

x'(ntl) = x'(NA, x. = S

0

y(n) = xM)C, C = F

« Example: consider following automaton:

b a A=

ba :o'

o OO
oo QX
O OT




Semimodule of Languages

e () is an idempotent semiring (quantale):
- (9 (X),+,0) is a commutative idempotent monoid (union),
-(9(2"),x,1) is a monoid (concatenation),
- multiplication distributes over addition,
-0is an annihilator: 0xa=0



Semimodule of Languages

e ©(X7)is an idempotent semiring (quantale):
- ((X),+,0) is a commutative idempotent monoid (union),
- (9(X),x,1) is a monoid (concatenation),
- multiplication distributes over addition,
-0is an annihilator: 0xa=0

e ((2))" is asemimodule over scalars in (& ):
-r(x+ty) =rx +ry, (r+s)x =rx +sx, (rs)x =r(sx),
- 1x = X, Ox =0

« Note: No additive and multiplicative inverses!



Observability

e Let L =[S,A,C]. Observe its output upto n-1:

[y(0) y(1) ... y(n-1)] =x.[CAC ... A"'C] =x.O (1)



Observability

e Let L =[S,A,C]. Observe its output upto n-1:
[y(0) y(1) ... y(n-1)] =x [CAC ... A" C]=x, O (1)

o If L operates on a vector space:

- L i1s observable if: x_ Is uniquely determined by (1),

- Observability matrix O: has rank n,

- n-outputs suffice: A"C=s A" C+s A"°C+..+s C
(Cayley-Hamilton Theorem)



Observability

e Let L =[S,A,C]. Observe the output upto n-1:
[y(0) y(1) ... y(n-1)] = x;.[CAC ... A"'C] =x.O (1)

o If L operates on a vector space:

- L is observable if: x_ is uniquely determined by (1),
- Observability matrix O: has rank n,
- n-outputs suffice: A"C=s A" C+s A"°C+...+s C

o If L operates on a semimodule:
- L is observable if: x_ Is uniquely determined by (1)



he Cayley-Hamilton Theorem

_ i 2
(A" =, A" +5, A" + . +5s|)



Permutations

« Permutations are bijections of {1,...,n}:
- Example: © ={(1,2),(2,3),(3,4),(4,1),(5,7),(6,6),(7,5)}



Permutations

« Permutations are bijections of {1,...,n}:
- Example: ©m ={(1,2),(2,3),(3,4),(4,1),(5,7),(6,6),(7,5)}

e The graph G(n) of a permutation
- G(n) decomposes into: elementary cycles

56 O ¢



Permutations
« Permutations are bijections of {1,...,n}:
- Example: © ={(1,2),(2,3),(3,4),(4,1),(5,7),(6,6),(7,5)}

« The graph G(r) of a permutation m:
- G(r) decomposes into: elementary cycles

@ @
(D—
e The sign of a permutation =

- Pos/Neg: even/odd number of even length cycles
- P: [P all positive/negative permutations



Eigenvalues in Vector Spaces

e The eigenvalues of a square matrix A:

- Eigenvector equation: x'A = x's

N

eigenvector eigenvalue




Matrix-Eigenspaces in Vector Spaces

e The eigenvalues of a square matrix A:

- Eigenvector equation: x'(slI-A) =0



Matrix-Eigenspaces in Vector Spaces

e The eigenvalues of a square matrix A:
- Eigenvector equation: x"(sI-A) = 0
e The characteristic equation of A:
- The characteristic polynomial: cp , (s) = [sI-A|

- The characteristic equation: cp,(s) =0



Matrix-Eigenspaces in Vector Spaces

e The eigenvalues of a square matrix A:
- Eigenvector equation: x‘(sI-A) = 0
e The characteristic equation of A:
- The characteristic polynomial: cp, (S) = [sI-A|

- The characteristic equation: cp,(s) =0

e The determinant of A:
- The determinant: |A| = . . n(A)- D, - n(A).
- Weight of a permutation: n(A) = []._, A(,x())



The Cayley-Hamilton Theorem (CHT)

e A satisfies Its characteristic equation: cp, (A) =0

Oa, O 0

12

s -a,
A=]la_ 0 a sl-A = -, S -a,
-a, 0

5-833




The Cayley-Hamilton Theorem (CHT)

e A satisfies Its characteristic equation: cp, (A) =0

0 a,, 0 s -a, 0
A = a, 0 a, Sl-A = -a, S -a,
a, 0 a., -a,, 0 s-a,,

ISI-A| = s® -a, s -a,a,s+aa a_-a.a.a, = 0




The Cayley-Hamilton Theorem (CHT)

e A satisfies Its characteristic equation: cp, (A) =0

0 a,, 0 s -a, 0
A = a, 0 a, Sl-A = -a, S -a,
_a31 0 a, h __a31 0 s-a, )

— o3 _ _ _
Isl-A| = s™ -a, s a.as+aa a.-a.aa =0

= a12a21 a = a33s alZaZlS a12a23a31




The Cayley-Hamilton Theorem (CHT)

e A satisfies Its characteristic equation: cp, (A) =0

0 a,, 0 s -a, 0
A = a, 0 a, sl-A = -a, S -a,
| a, 0 a, h | a, 0 s-a, )
_ 3 ) )
ISlI-A| = s aggs a,as+aa a.-aa.a, = 0
3 —
s” taa a, = a338 +a as +a.a.a

1221 12 23 31

A alZaZla I = aSSA a12a21A a'12a23a31|



The Cayley-Hamilton Theorem (CHT)

e A satisfies Its characteristic equation: cp, (A) =0

0) a,, 0 s -a, 0
A = a, 0 a, Sl-A = -a, S -a,
_a31 0 a33_ __a31 0 S_a33_
sl-A| =s’-a,s"-a a s+a,a a,-a.a.a, =0
SS a12a21 a - a33S a12a21S a12a23a31
A’ +ta.a a.l = a33A +a. a A ta.a a,l

12 23 31

NN N AN

cycle| |cycle| |cycle cycle cycle




The Cayley-Hamilton Theorem (CHT)

o A satisfies Its characteristic equation: cp,(A)=0

o Implicit assumptions in CHT:
- Subtraction Is available
- Multiplication is commutative



The Cayley-Hamilton Theorem (CHT)

o A satisfies Its characteristic equation: cp,(A)=0

o Implicit assumptions in CHT:
- Subtraction is available

- Multiplication is commutative

e Does CHT hold in semirings?
- Subtraction  not indispensible (Rutherford, Straubing)
- Commutativity problematic



CHT in Commutative Semirings
(Straubing’s Proof)

e Lift original semiring to the semiring of paths:
- Matrix A is lifted to a matrix G, of paths &

0a, O 0 (12 0 |
A=la, 0 a, 4}) G, =] (21 0 (23
a, 0 a, (31 0 (33



CHT in Commutative Semirings
(Straubing’s Proof)

e Lift original semiring to the semiring of paths:
- Matrix A is lifted to a matrix G, of paths =

- Permutation cycles o lifted cyclic paths n_

c={12.@0 ) =, =121




CHT in Commutative Semirings
(Straubing’s Proof)

e Lift original semiring to the semiring of paths:

- Matrix A is lifted to a matrix G, of paths &

- Permutation cycles lifted cyclic paths «_

e Prove CHT in the semiring of paths:

zn: D> .G = zn: > n.G* (CHT holds?)

=0 + =0 =
q o'qu q cqu



CHT in Commutative Semirings
(Straubing’s Proof)

o Lift original semiring to the semiring of paths:
- Matrix A is lifted to a matrix G, of paths &

- Permutation cycles lifted cyclic paths «t_

e Prove CHT in the semiring of paths:
- Show bijection between pos/neg products r_mw

+ —
(o] eP3 c eP1

(3:3)(1.2)(21) <= (B.3)(1.2)(2.1)




CHT in Commutative Semirings
(Straubing’s Proof)

e Lift original semiring to the semiring of paths:
- Matrix A is lifted to a matrix G, of paths =

- Permutation cycles lifted cyclic paths n_

e Prove CHT in the semiring of paths:
- Show bijection between pos/neg products w_mw

e Port results back to the original semiring:
- Apply products: n_n(A)
- Path application: (x,...w_)(A) = A(x,)..A(x )



CHT Iin Idempotent Semirings

e Lift original semiring to the semiring of paths:
- Matrix A: order in paths © important
- Permutation cycles: rotations are distinct



CHT Iin Idempotent Semirings

e Lift original semiring to the semiring of paths:

- Matrix A: order in paths © important

- Permutation cycles: rotations are distinct

c ={(1.2),(21);

o) 1,

I (1,2)(2,1)
0

0

0 0
(2,1)(1,2)0
0 0




CHT in Idempotent Semirings

e Lift original semiring to the semiring of paths:
- Matrix A: order in paths © important
- Permutation cycles: rotations are distinct

e Prove CHT In the semiring of paths:

- Products ©_G""°!: cycles to be properly inserted



CHT in Idempotent Semirings

e Lift original semiring to the semiring of paths:
- Matrix A: order in paths = important
- Permutation cycles: rotations are distinct

e Prove CHT In the semiring of paths:

- Products ©_G""°!: cycles to be properly inserted

[I_* G =11 G + GIT_G"*°"* +..+ G"°I[T_



CHT in Idempotent Semirings

e Lift original semiring to the semiring of paths:
- Matrix A: order in paths © important
- Permutation cycles: rotations are distinct

e Prove CHT in the semiring of paths:

- Products n_G"™°": cycles to be properly inserted

o Port results back to the original semiring:
- Apply products: TI_G"!(A)



CHT In Idempotent Semirings

e Theorem:  G" = Zn: Zn: I1_* G}

=1 —
q 0'qu



CHT In Idempotent Semirings

e Theorem: G" =) Zn: I1_x* G

Proof:
LHS < RHS: Letn € LHS

- Pidgeon-hole: n has at leastonecyclen_ins
- Structural: n_ Is also asimple cycle
n-lo|

-Removern_inm: xn[s/m_]isin G
- Shuffle-product: II_* G"*! reinserts n_



CHT In Idempotent Semirings

e Theorem: G"=) > II_*G)"°

Proof:
LHS < RHS: Letn® € LHS

- Pidgeon-hole: n has at leastonecyclen_ins
- Structural: n_ Is also asimple cycle

n-|o|

-Removern_ inm: xn[s/z_]isin G
- Shuffle-product: II_#* G"*! reinserts n_

RHS < LHS: Let®r € RHS

- No wrong path: The shuffle is sound
- l[dempotence: Takes care of multiple copies



CHT Iin Idempotent Semirings

(o if TI_(i,i) = 0

. Define: TI_(i, i) =
e L0 =1 0 i m (ii)=o




CHT Iin Idempotent Semirings

o if TI (i,i) =0

e Define: TI_(i,i) = { 0if II (i,i)=o

e Theorem: classic CHT can be derived by using:
"o G =TI, x G} + T, x G}
- application of CHT to G™'°! and G'®



CHT in Idempotent Semirings

(o if TI_(i,i) =0

. Define: T (i, i) =
eI 00=1 0 it m (ii)=o

e« Theorem: classic CHT can be derived by using:

-6 G" =TI * G"° + IT_* G
- application of CHT to G™'°! and G"'®

o Matrix CHT: can be regarded as a constructive
version of the pumping lemma.






Finite Automata as Linear Systems

« Now define the linear system L ,=[S,A,C]:

x'(n+1) = x'(N)A, x, = S(e)e

y'(n) = x'(N)C, C = F(e)e

« Example: consider following automaton:

L 0O 10 i
1 A@ =10 1 0}, X,(e)=
b a 0 0 0 I
® 000 M|
A=A@a+AbDp ~P)= 8 (O) (i . C(e) =




Observability

e Let L =[S,A,C] be an n-state automaton. It's output:
[y(0) y(1) ... y(n-1)] =x;[C AC ... A" C] =x,0 (1)
L is observable if X, Is uniquely determined by (1).

« Example: the observability matrix O of L, Is:

wele[ao[2858] b b

o=|x [0]1T 11 00 1| A p ~a
x, |1[1:0[1.0 0 0 “—‘—" @
x, |1]0 1]0:0:0 1




